Dérivée covarianteEn géométrie différentielle, la dérivée covariante est un outil destiné à définir la dérivée d'un champ de vecteurs sur une variété. Dans le cas où la dérivée covariante existe, il n'existe pas de différence entre la dérivée covariante et la connexion, à part la manière dont elles sont introduites. (Cela est faux quand la dérivée covariante n'existe pas en revanche ).
Variable aléatoirevignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
Exterior covariant derivativeIn the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection. Let G be a Lie group and P → M be a principal G-bundle on a smooth manifold M. Suppose there is a connection on P; this yields a natural direct sum decomposition of each tangent space into the horizontal and vertical subspaces. Let be the projection to the horizontal subspace.
Quantification vectorielleLa quantification vectorielle est une technique de quantification souvent utilisée dans la compression de données avec pertes de données (Lossy Data Compression) pour laquelle l'idée de base est de coder ou de remplacer par une clé des valeurs d'un espace vectoriel multidimensionnel vers des valeurs d'un sous-espace discret de plus petite dimension. Le vecteur de plus petit espace nécessite moins d'espace de stockage et les données sont donc compressées.
Carte autoadaptativeLes cartes autoadaptatives, cartes auto-organisatrices ou cartes topologiques forment une classe de réseau de neurones artificiels fondée sur des méthodes d'apprentissage non supervisées. Elles sont souvent désignées par le terme anglais self organizing maps (SOM), ou encore cartes de Kohonen du nom du statisticien ayant développé le concept en 1984. La littérature utilise aussi les dénominations : « réseau de Kohonen », « réseau autoadaptatif » ou « réseau autoorganisé ».
Multilevel modelMultilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped.
Coordonnées cartésiennesUn système de coordonnées cartésiennes permet de déterminer la position d'un point dans un espace affine (droite, plan, espace de dimension 3, etc.) muni d'un repère cartésien. Le mot cartésien vient du mathématicien et philosophe français René Descartes. Il existe d'autres systèmes de coordonnées permettant de repérer un point dans le plan ou dans l'espace. Sur une droite affine , un repère est la donnée de : une origine , c'est-à-dire un point distingué de ; un vecteur de la droite vectorielle directrice .
Modèle mixteUn modèle mixte est un modèle statistique qui comporte à la fois des effets fixes et des effets aléatoires. Ce type de modèle est utile dans une grande variété de domaines, tels que la physique, la biologie ou encore les sciences sociales. Les modèles mixtes sont particulièrement utiles dans les situations où des mesures répétées sont effectuées sur les mêmes variables (étude longitudinale). Ils sont souvent préférés à d'autres approches telle que rANOVA, dans la mesure où ils peuvent être utilisés dans le cas où le jeu de données présente des valeurs manquantes.
Composantes d'un vecteurvignette|Composantes d'un vecteur dans un espace géométrique à trois dimensions, x, y et z. Dans le cas du concept géométrique classique de vecteur, il existe une identification complète entre ses « composantes » et les « coordonnées » qui le représentent. Cependant, il existe d'autres types d'espaces vectoriels (comme, par exemple, l'ensemble des polynômes d'ordre n), dans lesquels le concept de coordonnée n'a pas la généralité de l'idée de composante.
Étude de cohorteUne étude de cohorte est une étude statistique de type longitudinal. Elle peut être ou interventionnelle, ou . Ce type d'étude scientifique est notamment utilisé en médecine et en épidémiologie (pour ces deux domaines, les bases de données collectées sont dédiées aux études de cohortes épidémiologiques), en sciences humaines et sociales, en science actuarielle et en écologie. L'une des premières études de cohorte connues fut menée par Janet Lane-Claypon en 1912 dans son étude intitulée Report to the Local Government Board upon the Available Data in Regard to the Value of Boiled Milk as a Food for Infants and Young Animals.