AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
UltrasonL'ultrason est une onde mécanique et élastique, qui se propage au travers de supports fluides, solides, gazeux ou liquides. La gamme de fréquences des ultrasons se situe entre , trop élevées pour être perçues par l'oreille humaine, mais un flux d'ultrasons de très haute intensité, et focalisé, peut être perçu par le corps humain, via d'autres mécanorécepteurs. Le nom vient du fait que leur fréquence est trop élevée pour être audible pour l'oreille humaine (le son est trop aigu : la gamme de fréquences audibles par l'être humain se situe entre 20 et .
Informationvignette|redresse=0.6|Pictogramme représentant une information. L’information est un de la discipline des sciences de l'information et de la communication (SIC). Au sens étymologique, l'« information » est ce qui donne une forme à l'esprit. Elle vient du verbe latin « informare », qui signifie « donner forme à » ou « se former une idée de ». L'information désigne à la fois le message à communiquer et les symboles utilisés pour l'écrire. Elle utilise un code de signes porteurs de sens tels qu'un alphabet de lettres, une base de chiffres, des idéogrammes ou pictogrammes.
Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
ARMAEn statistique, les modèles ARMA (modèles autorégressifs et moyenne mobile), ou aussi modèle de Box-Jenkins, sont les principaux modèles de séries temporelles. Étant donné une série temporelle , le modèle ARMA est un outil pour comprendre et prédire, éventuellement, les valeurs futures de cette série. Le modèle est composé de deux parties : une part autorégressive (AR) et une part moyenne-mobile (MA). Le modèle est généralement noté ARMA(,), où est l'ordre de la partie AR et l'ordre de la partie MA.
Partial autocorrelation functionIn time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags. It contrasts with the autocorrelation function, which does not control for other lags. This function plays an important role in data analysis aimed at identifying the extent of the lag in an autoregressive (AR) model.
Échographievignette|240px|droite|Échographie d'un fœtus de neuf semaines. L'échographie est une technique d' employant des ultrasons. Elle est utilisée de manière courante en médecine humaine et vétérinaire, mais peut aussi être employée en recherche et dans l'industrie. Le mot « échographie » provient de la nymphe Écho dans la mythologie grecque qui personnifiait ce phénomène et d'une racine grecque Graphô (écrire). Il se définit donc comme étant « un écrit par l'écho ».
Unit rootIn probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If the other roots of the characteristic equation lie inside the unit circle—that is, have a modulus (absolute value) less than one—then the first difference of the process will be stationary; otherwise, the process will need to be differenced multiple times to become stationary.