Variation totale d'une fonctionEn mathématiques, la variation totale est liée à la structure (locale ou globale) du codomaine d'une fonction. Pour une fonction continue à valeurs réelles f, définie sur un intervalle [a, b] ⊂ R, sa variation totale sur l'intervalle de définition est une mesure de la longueur d'arc de la projection sur l'axe des ordonnées de la courbe paramétrée (x, f(x)), pour x ∈ [a, b]. L'idée de variation totale pour les fonctions d'une variable réelle a d'abord été introduite par Camille Jordan, afin de démontrer un théorème de convergence pour les séries de Fourier de fonctions discontinues périodiques à variation bornée.
Total variation denoisingIn signal processing, particularly , total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of the absolute is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as .
Analyse convexeL'analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d'aspects les concepts de l'algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse. Elle s'est beaucoup développée du fait de ses interactions avec l'optimisation, où elle apporte des propriétés particulières aux problèmes qui y sont étudiés. Certains voient la naissance de l'analyse convexe « moderne » dans l'invention des notions de sous-différentiel, d'application proximale et d'inf-convolution dans les années 1962-63.
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...
Algorithme espérance-maximisationL'algorithme espérance-maximisation (en anglais expectation-maximization algorithm, souvent abrégé EM) est un algorithme itératif qui permet de trouver les paramètres du maximum de vraisemblance d'un modèle probabiliste lorsque ce dernier dépend de variables latentes non observables. Il a été proposé par Dempster et al. en 1977. De nombreuses variantes ont par la suite été proposées, formant une classe entière d'algorithmes.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Slater's conditionIn mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. Informally, Slater's condition states that the feasible region must have an interior point (see technical details below). Slater's condition is a specific example of a constraint qualification. In particular, if Slater's condition holds for the primal problem, then the duality gap is 0, and if the dual value is finite then it is attained.