Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Constraint logic programmingConstraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is . In this clause, is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.
Fonction de baseEn analyse numérique, une fonction de base (ou basis function en anglais) est une fonction apparaissant dans une « base » fixée d'un espace fonctionnel. Selon le contexte, une base peut désigner : une base d'un espace vectoriel : la suite (X) est une base de l'espace R[X] des polynômes à coefficients réels, et les monômes X en sont les fonctions de base. une base de Hilbert d'un espace de Hilbert : dans la théorie de Fourier discrète, les fonctions trigonométriques x ↦ cos(nx) et x ↦ sin(nx) sont les fonctions de base d'une base Hilbert de L(R/Z, R).
Filtre coupe-bandeUn filtre coupe-bande aussi appelé filtre réjecteur de bande ou filtre cloche est un filtre empêchant le passage d'une partie des fréquences. Il est composé d'un filtre passe-haut et d'un filtre passe-bas dont les fréquences de coupure sont souvent proches mais différentes, la fréquence de coupure du filtre passe-bas est systématiquement inférieure à la fréquence de coupure du filtre passe-haut.
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Régression des moindres carrés partielsLa régression des moindres carrés partiels a été inventée en 1983 par Svante Wold et son père Herman Wold ; on utilise fréquemment l'abréviation anglaise régression PLS ( et/ou ). La régression PLS maximise la variance des prédicteurs (Xi) = X et maximise la corrélation entre X et la variable à expliquer Y. Cet algorithme emprunte sa démarche à la fois à l'analyse en composantes principales (ACP) et à la régression.
Filtre passe-hautthumb|right|Image sur laquelle a été appliqué un filtre passe-haut (résultat à droite) Un filtre passe-haut (en anglais, high-pass filter ou HPF) est un filtre qui laisse passer les hautes fréquences et qui atténue les basses fréquences, c'est-à-dire les fréquences inférieures à la fréquence de coupure. Il pourrait également être appelé filtre coupe-bas. Le filtre passe-haut est l'inverse du filtre passe-bas et ces deux filtres combinés forment un filtre passe-bande.
Least absolute deviationsLeast absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L1 norm of such values. It is analogous to the least squares technique, except that it is based on absolute values instead of squared values.