Résumé
La régression des moindres carrés partiels a été inventée en 1983 par Svante Wold et son père Herman Wold ; on utilise fréquemment l'abréviation anglaise régression PLS ( et/ou ). La régression PLS maximise la variance des prédicteurs (Xi) = X et maximise la corrélation entre X et la variable à expliquer Y. Cet algorithme emprunte sa démarche à la fois à l'analyse en composantes principales (ACP) et à la régression. Plus précisément, la régression PLS cherche des composantes, appelées variables latentes, liées à X et à Y, servant à exprimer la régression de Y sur ces variables et finalement de Y sur X. En 1966, Herman Wold propose un algorithme nommé tout d'abord NILES (), puis NIPALS () pour l'analyse en composantes principales. En 1975 il présente l'approche PLS, pour analyser les données exprimées en J blocs de variables sur les mêmes individus. En 1983, Svante Wold (fils d'Herman Wold) et Harald Martens combinent NIPALS et l'approche PLS pour les adapter à la régression dans le cas où le nombre de variables est très supérieur au nombre d'observations (et où une forte multicollinearité est observée). En 1989, Svante Wold, Nouna Kettaneh-Wold, et Bert Skagerberg présentèrent pour la première fois la régression PLS non linéaire. En 1990 M. Stone et R. J. Brooks proposent une méthode paramétrique permettant d'employer la méthode PLS pour la régression linéaire multiple, la PLS et la régression sur composantes principales. thumb|alt=Illustration explicative de l'approche PLS|fig.01 Approche PLS : réseau de causalité entre quatre groupes de variables (d'après M.Tenenhaus) Le modèle de l'approche PLS s'applique sur des blocs de variables continues appelées variables manifestes, chacun de ces blocs sont des observations effectuées sur les mêmes individus. On pense dans ce modèle que chaque bloc de variables peut être résumé par une variable latente. Les variables manifestes peuvent engendrer les variables latentes, elles sont appelées alors variables manifestes formatives, ou bien elles peuvent être engendrées par les variables latentes auquel cas elles sont dénommées variables manifestes réflectives.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.