Vecteur de PoyntingEn physique, le vecteur de Poynting est la densité de flux liée à la propagation de l'onde électromagnétique. Sa direction est la direction de propagation. On le note , , ou . Le flux du vecteur de Poynting à travers une surface (fermée ou non) est égal à la puissance véhiculée par l'onde à travers cette surface. Le module de ce vecteur est donc une puissance par unité de surface, c'est-à-dire une densité de flux d'énergie ; il est homogène à un éclairement énergétique et à une exitance énergétique ; et, dans le Système international (SI) d'unités, il s'exprime en watts par mètre carré.
F-divergenceIn probability theory, an -divergence is a function that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of -divergence. These divergences were introduced by Alfréd Rényi in the same paper where he introduced the well-known Rényi entropy. He proved that these divergences decrease in Markov processes.
Divergence (statistiques)En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
ÉlectrodynamiqueL’électrodynamique est la discipline physique qui étudie et traite des actions dynamiques entre les courants électriques. On distingue l’électrodynamique classique et l’électrodynamique quantique. Tout phénomène d'électrodynamique classique est décrit par les équations de Maxwell. En 1820, André-Marie Ampère, après avoir été informé de l'expérience de Hans Christian Ørsted mettant en évidence l’interaction entre un courant électrique et un aimant, formalise mathématiquement, pour la première fois, les forces d'interaction entre aimants et courants et les forces mutuelles entre courants.
Flow velocityIn continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is the flow speed and is a scalar. It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).
Potentiel vecteur du champ magnétiqueLe potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n'y a pas de confusion possible, est une quantité physique assimilable à un champ de vecteurs intervenant en électromagnétisme. Elle n'est pas directement mesurable, mais sa présence est intimement liée à celle d'un champ électrique et/ou d'un champ magnétique. Son unité SI est le kg.C-1.m.s-1. Bien qu'il ait d'abord été introduit uniquement en tant qu'outil mathématique, en mécanique quantique, il a une réalité physique, comme l'a montré l'expérience Aharonov-Bohm.
Complex lamellar vector fieldIn vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl. The adjective "lamellar" derives from the noun "lamella", which means a thin layer.
Équation de LaplaceEn analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Four-currentIn special and general relativity, the four-current (technically the four-current density) is the four-dimensional analogue of the electric current density. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than three-dimensional space and time separately. Mathematically it is a four-vector, and is Lorentz covariant. Analogously, it is possible to have any form of "current density", meaning the flow of a quantity per unit time per unit area.
Divergence de Kullback-LeiblerEn théorie des probabilités et en théorie de l'information, la divergence de Kullback-Leibler (ou divergence K-L ou encore entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Elle doit son nom à Solomon Kullback et Richard Leibler, deux cryptanalystes américains. Selon la NSA, c'est durant les années 1950, alors qu'ils travaillaient pour cette agence, que Kullback et Leibler ont inventé cette mesure. Elle aurait d'ailleurs servi à la NSA dans son effort de cryptanalyse pour le projet Venona.