Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Entier naturelEn mathématiques, un entier naturel est un nombre permettant fondamentalement de compter des objets considérés comme des unités équivalentes : un jeton, deux jetons... une carte, deux cartes, trois cartes... Un tel nombre entier peut s'écrire avec une suite finie de chiffres en notation décimale positionnelle (sans signe et sans virgule). L’étude des entiers naturels est l’objet de l’arithmétique, branche des mathématiques, constituée dès l'Antiquité grecque.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
PSPACE-completeIn computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.
Inductive programmingInductive programming (IP) is a special area of automatic programming, covering research from artificial intelligence and programming, which addresses learning of typically declarative (logic or functional) and often recursive programs from incomplete specifications, such as input/output examples or constraints. Depending on the programming language used, there are several kinds of inductive programming.
Entretien d'évaluationL'entretien d'évaluation est un entretien qui a pour but de fixer des objectifs à atteindre au personnel pour une période déterminée, et leur évaluation pour le passé, en fonction de l'ensemble des priorités, des connaissances, de l'expérience et des comportements et aptitudes. Il s'agit d'une explicitation fine des missions afin de déterminer les compétences nécessaires à leur exercice et les actions de formations destinées à acquérir et à améliorer ces compétences.
Clause de HornEn logique, en particulier en calcul propositionnel, une clause de Horn est une clause comportant au plus un littéral positif. Il existe donc trois types de clauses de Horn : celles qui comportent un littéral positif et au moins un littéral négatif, appelées clauses de Horn strictes ; celles qui comportent un littéral positif et aucun littéral négatif, appelées clauses de Horn positives ; celles qui ne comportent que des littéraux négatifs, appelées clauses de Horn négatives.
Job performanceJob performance assesses whether a person performs a job well. Job performance, studied academically as part of industrial and organizational psychology, also forms a part of human resources management. Performance is an important criterion for organizational outcomes and success. John P. Campbell describes job performance as an individual-level variable, or something a single person does. This differentiates it from more encompassing constructs such as organizational performance or national performance, which are higher-level variables.
Machine de Turing alternanteEn informatique théorique, et notamment en théorie de la complexité, les machines de Turing alternantes sont une généralisation des machines de Turing non déterministes. Leur mode d'acceptation généralise les conditions d'acceptation utilisées dans les classes de complexité NP et co-NP. Le concept de machine de Turing alternante a été formulé par Ashok K. Chandra et Larry Stockmeyer et indépendamment par Dexter Kozen en 1976, avec un article publié en commun en 1981.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.