Forecast errorIn statistics, a forecast error is the difference between the actual or real and the predicted or forecast value of a time series or any other phenomenon of interest. Since the forecast error is derived from the same scale of data, comparisons between the forecast errors of different series can only be made when the series are on the same scale. In simple cases, a forecast is compared with an outcome at a single time-point and a summary of forecast errors is constructed over a collection of such time-points.
PrévisionLa prévision est une . D'une façon générale, . Dans un sens plus restrictif, en épistémologie contemporaine, la prévision se distingue de la prédiction, qui est issue d'une loi ou théorie scientifique hautement confirmée ou corroborée, tandis que la prévision découle d'hypothèses ou de conjectures moins assurées. La prévisibilité et la prédictibilité désignent la possibilité que certains événements ou phénomènes soient prévus ou prédits à partir d'une hypothèse ou d'une théorie scientifique et de conditions initiales appropriées.
Intervalle de fluctuationEn mathématiques, un intervalle de fluctuation, aussi appelé intervalle de pari, permet de détecter un écart important par rapport à la valeur théorique pour une grandeur établie sur un échantillon. C'est un intervalle dans lequel la grandeur observée est censée se trouver avec une forte probabilité (souvent de l'ordre de 95 %). Le fait d'obtenir une valeur en dehors de cet intervalle s'interprète alors en mettant en cause la représentativité de l'échantillon ou la valeur théorique.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Prévision d'ensemblesvignette|En haut: Modèle déterministe du WRF pour la prévision de trajectoire de l'ouragan Rita en 2005. En bas : Dispersion des différents modèles utilisés par le National Hurricane Center pour la même tempête. La prévision d'ensembles est une méthode de prévision numérique du temps utilisé pour tenter de générer un échantillon représentatif des états futurs possibles d'un système dynamique. En effet, ni les observations, ni l'analyse, ni le modèle de prévision ne sont parfaits et la dynamique atmosphérique est très sensible, dans certaines conditions, à la moindre fluctuation.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.
Prévision météorologiqueLa prévision météorologique est une application des connaissances en météorologie et des techniques modernes de prises de données et d’informatique pour prévoir l’état de l’atmosphère à un temps ultérieur. L’histoire de la prévision du temps remonte aux temps immémoriaux avec les oracles et devins mais la science moderne date vraiment de la fin du et du début du . Elle s’est cependant affirmée depuis la Seconde Guerre mondiale alors que les moyens techniques comme le radar et les communications modernes ont rendu l’accès aux données plus rapide et plus nombreuses.
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).