Publication

Nonstoichiometric Low-Temperature Grown GaAs Nanowires

Concepts associés (27)
Nanofil
Un nanofil est une nanostructure, dont le diamètre est exprimé en nanomètre, donc en principe de 1 à 999 nanomètres. Pour plus de simplicité, on tolère un certain débordement dans ces dimensions. Alternativement, les nanofils peuvent être définis comme des structures qui ont une épaisseur ou un diamètre définis, mais d'une longueur quelconque. À ces échelles les effets quantiques sont importants - d'où l'utilisation du terme de « fils quantiques ».
Microscopie
La microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
Défaut cristallin
vignette|Défauts ponctuels vus au MET (a, atome de S substitué par Mo) et lacunes (b, atomes de S manquants). Echelle barre: 1 nm. Un 'défaut cristallin' est une interruption de la périodicité du cristal. La périodicité d'un cristal représente la répétition régulière des positions atomiques dans les trois directions de l'espace. Les motifs réguliers sont interrompus par des défauts cristallographiques. Ils peuvent être ponctuels (dimension 0), linéaires (dimension 1), planaires (dimension 2) ou volumiques (dimension 3).
Microscopie à super-résolution
La microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Physique atomique
La physique atomique est le champ de la physique qui étudie les atomes en tant que systèmes isolés qui comprennent les électrons et le noyau atomique. Elle se concentre essentiellement sur l'arrangement des électrons autour du noyau et sur la façon dont celui-ci est modifié. Cette définition englobe tant les ions que les atomes électriquement neutres. Puisque « atomique » et « nucléaire » sont utilisés de façon synonyme dans le langage courant, la physique atomique est souvent confondue avec la physique nucléaire.
Cathodoluminescence
vignette|Un diamant vu par cathodoluminescence. La cathodoluminescence est le phénomène optique et électrique que l'on observe lorsqu'un faisceau d'électrons produit par un canon à électrons (par exemple un tube à rayons cathodiques) bombarde un échantillon en phosphore (par exemple), conduisant à l'émission de lumière (dans le domaine UV, visible ou infrarouge). L'application la plus répandue est l'écran de télévision (lorsque celui-ci est un tube à rayons cathodiques).
Lipoprotéine de haute densité
Les lipoprotéines de haute densité (HDL, pour l'anglais high density lipoprotein) sont des lipoprotéines responsables du transport du cholestérol vers le foie, où il pourra être éliminé. Cette fonction permet d'éviter l'accumulation de cholestérol dans les vaisseaux sanguins et donc d'éviter les risques d'athérosclérose. C'est pour cela que les HDL sont communément appelées « bon cholestérol », par opposition aux LDL (lipoprotéines de basse densité) qualifiées de « mauvais cholestérol » (en réalité, ni les unes ni les autres ne sont du cholestérol).
Arséniure de gallium
L'arséniure de gallium est un composé chimique de formule brute GaAs appartenant à la famille des semiconducteurs -. C'est un matériau semi-conducteur à gap direct présentant une structure cristalline cubique de type sphalérite (blende). Il est utilisé notamment pour réaliser des composants micro-ondes, des circuits intégrés monolithiques hyperfréquences, des composants opto-électroniques, des diodes électroluminescentes dans l'infrarouge, des diodes laser, des cellules photovoltaïques et des fenêtres optiques.
Transistor à effet de champ
Un transistor à effet de champ (en anglais, Field-effect transistor ou FET) est un dispositif semi-conducteur de la famille des transistors. Sa particularité est d'utiliser un champ électrique pour contrôler la forme et donc la conductivité d'un « canal » dans un matériau semiconducteur. Il concurrence le transistor bipolaire dans de nombreux domaines d'applications, tels que l'électronique numérique. Le premier brevet sur le transistor à effet de champ a été déposé en 1925 par Julius E. Lilienfeld.
Multigate device
A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.