Spectral leakageThe Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum. Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles (phase) of the non-zero values of S(f). Any other type of operation creates new frequency components that may be referred to as spectral leakage in the broadest sense. Sampling, for instance, produces leakage, which we call aliases of the original spectral component.
Spectroscopie dans l'infrarouge procheLa spectroscopie dans l'infrarouge proche (ou dans le proche infrarouge, SPIR), souvent désignée par son sigle anglais NIRS (near-infrared spectroscopy), est une technique de mesure et d'analyse des spectres de réflexion dans la gamme de longueurs d'onde (l'infrarouge proche). Cette technique est largement utilisée dans les domaines de la chimie (polymères, pétrochimie, industrie pharmaceutique), de l’alimentation, de l’agriculture ainsi qu'en planétologie. À ces longueurs d’onde, les liaisons chimiques qui peuvent être analysées sont C-H, O-H et N-H.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Spectroscopie par transformée de FourierLa spectroscopie par transformée de Fourier est une technique de mesure par laquelle les spectres sont collectés sur la base de mesures de la cohérence d'une source radiative, utilisant le domaine temporel ou le domaine spatial des rayonnements électromagnétiques ou autre. Elle peut être appliquée à plusieurs types de spectroscopie dont la spectroscopie optique, la spectroscopie infrarouge (FTIR, FT-NIRS), la résonance magnétique nucléaire (RMN) et l'imagerie spectroscopique à résonance magnétique (MRSI), la spectrométrie de masse et la spectroscopie par résonance paramagnétique électronique.
Spectroscopie RMN en deux dimensionsLa spectroscopie RMN en deux dimensions ou spectroscopie RMN bidimensionnelle ou encore RMN-2D est un ensemble de dispositifs de reconnaissance de relations de proximité, dans l'espace ou à travers les liaisons, entre plusieurs noyaux actifs en RMN. Il s'agit de RMN de corrélation. Dans une expérience de spectroscopie RMN bidimensionnelle, le résultat est un spectre en trois dimensions : le déplacement chimique pour le noyau 1 (δ1), le déplacement chimique pour le noyau 2 (δ2) et l'intensité du signal.
Multidimensional transformIn mathematical analysis and applications, multidimensional transforms are used to analyze the frequency content of signals in a domain of two or more dimensions. One of the more popular multidimensional transforms is the Fourier transform, which converts a signal from a time/space domain representation to a frequency domain representation. The discrete-domain multidimensional Fourier transform (FT) can be computed as follows: where F stands for the multidimensional Fourier transform, m stands for multidimensional dimension.
Théorème d'inversion de FourierEn mathématiques, le théorème d'inversion de Fourier dit que pour de nombreux types de fonctions, il est possible de retrouver une fonction à partir de sa transformée de Fourier. En traitement du signal, on pourrait dire que la connaissance de toutes les informations d'amplitude et de phase des ondes constituant un signal permet précisément de reconstruire ce signal.
Transformée de WalshEn mathématiques, et plus précisément en analyse harmonique, la transformée de Walsh est l'analogue de la transformée de Fourier discrète. Elle opère sur un corps fini à la place des nombres complexes. Elle est utilisée en théorie de l'information à la fois pour les codes linéaires et la cryptographie. Analyse harmonique sur un groupe abélien fini Le contexte est identique à celui de l'analyse harmonique classique d'un groupe abélien fini.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Excitonvignette|Représentation schématique d'un exciton de Frenkel, dans un cristal (points noirs). Un exciton est, en physique, une quasi-particule que l'on peut voir comme une paire électron-trou liée par des forces de Coulomb. Une analogie souvent utilisée consiste à comparer l'électron et le trou respectivement à l'électron et au proton d'un atome d'hydrogène. Ce phénomène se produit dans les semi-conducteurs et les isolants. En 2008, le premier dispositif électronique basé sur des excitons a été démontré, fonctionnant à des températures cryogéniques.