Lemme des cinqEn algèbre homologique, le lemme des cinq permet d'établir l'injectivité et la surjectivité des flèches dans les diagrammes commutatifs. Précisément : en supposant 1) que le diagramme ci-dessous est commutatif 2) que les deux lignes du diagramme sont exactes 3) que et sont des isomorphismes 4) que est un épimorphisme et un monomorphisme alors est un isomorphisme. Ceci vaut non seulement dans une catégorie abélienne (comme celle des groupes abéliens, ou celle des espaces vectoriels sur un corps fixé) mais aussi, par exemple, dans la catégorie des groupes.
Théorème de dérivation des fonctions composéesEn mathématiques, dans le domaine de l'analyse, le théorème de dérivation des fonctions composées (parfois appelé règle de dérivation en chaîne ou règle de la chaîne, selon l'appellation anglaise) est une formule explicitant la dérivée d'une fonction composée pour deux fonctions dérivables. Elle permet de connaître la j-ème dérivée partielle de la i-ème application partielle de la composée de deux fonctions de plusieurs variables chacune.
X.509X.509 est une norme spécifiant les formats pour les certificats à clé publique, les listes de révocation de certificat, les attributs de certificat, et un algorithme de validation du chemin de certification, définie par l'Union internationale des télécommunications (UIT). X.509 établit entre autres un format standard de certificat électronique et un algorithme pour la validation de chemin de certification. X.509 fait également l'objet de nombreuses RFC de l'IETF. X.509 a été créée en 1988 dans le cadre de la norme X.
X.OrgX.Org est un serveur X libre issu d'un fork de XFree86 en à la suite d'un désaccord sur le changement de licence de XFree86. Il fonctionne avec la plupart des systèmes d'exploitation de type UNIX (GNU/Linux, dérivés de BSD, Solaris, etc.), mais aussi avec Microsoft Windows via Cygwin. Du fait de sa licence, il connaît une grande popularité au sein de la communauté du logiciel libre où il a remplacé XFree86. La gouvernance du projet est assurée par la fondation X.
Lemme de PoincaréLe lemme de Poincaré est un résultat fondamental en analyse à plusieurs variables et en géométrie différentielle. Il concerne les formes différentielles (implicitement de classe C) sur une variété différentielle (implicitement lisse). D'après le théorème de Schwarz, toute forme différentielle exacte est fermée. Le lemme de Poincaré assure une réciproque partielle : Sous ces hypothèses, la conclusion du lemme de Poincaré se reformule en termes de cohomologie de De Rham. En particulier, toute forme différentielle fermée est localement exacte.
Théorème d'inversion localeEn mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange.
Lemme d'ItōLe lemme d'Itō, ou formule d'Itō, est l'un des principaux résultats de la théorie du calcul stochastique, qui permet d'exprimer la différentielle d'une fonction d'un processus stochastique au cours du temps. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS). La formule d'Itō a été démontrée pour la première fois par le mathématicien japonais Kiyoshi Itō dans les années 1940.
Doubly periodic functionIn mathematics, a doubly periodic function is a function defined on the complex plane and having two "periods", which are complex numbers u and v that are linearly independent as vectors over the field of real numbers. That u and v are periods of a function ƒ means that for all values of the complex number z. The doubly periodic function is thus a two-dimensional extension of the simpler singly periodic function, which repeats itself in a single dimension.
Qualitative variationAn index of qualitative variation (IQV) is a measure of statistical dispersion in nominal distributions. There are a variety of these, but they have been relatively little-studied in the statistics literature. The simplest is the variation ratio, while more complex indices include the information entropy. There are several types of indices used for the analysis of nominal data. Several are standard statistics that are used elsewhere - range, standard deviation, variance, mean deviation, coefficient of variation, median absolute deviation, interquartile range and quartile deviation.
Randomness extractorA randomness extractor, often simply called an "extractor", is a function, which being applied to output from a weak entropy source, together with a short, uniformly random seed, generates a highly random output that appears independent from the source and uniformly distributed. Examples of weakly random sources include radioactive decay or thermal noise; the only restriction on possible sources is that there is no way they can be fully controlled, calculated or predicted, and that a lower bound on their entropy rate can be established.