Groupe de KleinEn mathématiques, le groupe de Klein est, à isomorphisme près, l'un des deux groupes à quatre éléments, l'autre étant le groupe cyclique ; c'est le plus petit groupe non cyclique. Il porte le nom du mathématicien allemand Felix Klein, qui en 1884 le désignait par « Vierergruppe » (groupe de quatre) dans son « cours sur l'icosaèdre et la résolution des équations du cinquième degré ». Le groupe de Klein est entièrement défini par le fait que les trois éléments différents de l'élément neutre e ont un ordre égal à 2 (ils sont involutifs), et que le produit de deux distincts d'entre eux est égal au troisième.
Groupe dicycliqueEn algèbre et plus précisément en théorie des groupes, le groupe dicyclique (pour tout entier n ≥ 2) est défini par la présentation Les groupes () sont les groupes quaternioniques (les groupes dicycliques nilpotents). En particulier, est le groupe des quaternions. est un groupe non abélien d'ordre 4n, extension par le sous-groupe cyclique engendré par (normal et d'ordre 2n) d'un groupe d'ordre 2. Il est donc résoluble. Contrairement au groupe diédral D, cette extension n'est pas un produit semi-direct.
Classical modular curveIn number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation Φn(x, y) = 0, such that (x, y) = (j(nτ), j(τ)) is a point on the curve. Here j(τ) denotes the j-invariant. The curve is sometimes called X0(n), though often that notation is used for the abstract algebraic curve for which there exist various models. A related object is the classical modular polynomial, a polynomial in one variable defined as Φn(x, x).
Curve25519vignette|Représentation de la courbe elliptique Curve25519 Curve25519 est une courbe elliptique offrant 128 bits de sécurité et conçue pour être utilisée par le protocole d'échange de clés Diffie-Hellman basé sur les courbes elliptiques (ECDH). C'est une courbe elliptique permettant des performances très élevées, n'étant protégée par aucun brevet connu et moins affectée par les générateurs de nombres pseudo-aléatoires défaillants. Le brouillon original Curve25519, le définissait comme une fonction Diffie–Hellman (DH).
Groupe ordonnéUn groupe ordonné est un groupe muni d'une relation d'ordre respectée par les translations. Soit (G,.) un groupe (la loi du groupe étant notée multiplicativement) et ≤ une relation d'ordre sur G. On dit que celle-ci est compatible avec la loi du groupe lorsque pour tous éléments x, y et z du groupe, la relation x ≤ y entraîne les deux relations zx ≤ zy et xz ≤ yz. Un groupe ordonné est un ensemble muni simultanément d'une loi de groupe et d'une relation d'ordre compatible.
Anneau finiEn mathématiques, un anneau fini est un anneau qui a un nombre fini d'éléments. Chaque corps fini est un exemple d’anneau fini, et la partie additive de chaque anneau fini est un exemple de groupe fini et abélien, mais la notion même d’anneaux finis a une histoire plus récente. Comme les anneaux sont plus rigides que les groupes, la classification des anneaux finis est plus simple que celle des groupes finis.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
NombreUn nombre est un concept permettant d’évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d’ordonner des éléments en indiquant leur rang. Souvent écrits à l’aide d’un ou plusieurs chiffres, les nombres interagissent par le biais d’opérations qui sont résumées par des règles de calcul. Les propriétés de ces relations entre les nombres sont l’objet d’étude de l’arithmétique, qui se prolonge avec la théorie des nombres.
Théorème de Faltingsvignette|Gerd Faltings. En théorie des nombres, le théorème de Faltings, précédemment connu sous le nom de conjecture de Mordell donne des résultats sur le nombre de solutions d'une équation diophantienne. Il a été conjecturé par le mathématicien anglais Louis Mordell en 1922 et démontré par Gerd Faltings en 1983, soit environ soixante ans après que la conjecture fut posée. Soit l'équation définie de la manière suivante : avec P un polynôme à coefficients rationnels.