Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Filtre adaptatifUn filtre adaptatif est un système avec un filtre linéaire dont la fonction de transfert est contrôlée par des paramètres variables et un moyen d'ajuster ces paramètres selon un algorithme d'optimisation. En raison de la complexité des algorithmes d'optimisation, presque tous les filtres adaptatifs sont des filtres numériques. Les filtres adaptatifs sont nécessaires pour certaines applications parce que certains paramètres du traitement souhaité (par exemple, l'emplacement des surfaces réfléchissantes dans un espace réverbérant) ne sont pas connus à l'avance ou changent.
Credible intervalIn Bayesian statistics, a credible interval is an interval within which an unobserved parameter value falls with a particular probability. It is an interval in the domain of a posterior probability distribution or a predictive distribution. The generalisation to multivariate problems is the credible region. Credible intervals are analogous to confidence intervals and confidence regions in frequentist statistics, although they differ on a philosophical basis: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Variable aléatoirevignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
Filtre de WienerLe filtre de Wiener est un filtre utilisé pour estimer la valeur désirée d'un signal bruité. Le filtre de Wiener minimise l'erreur quadratique moyenne entre le processus aléatoire estimé et le processus souhaité. Norbert Wiener a d'abord proposé le filtre dans les années 1940, puis publié en 1949. Vers la même époque Andreï Kolmogorov travaillait sur des filtres similaires. Le filtre de Wiener a une variété d'applications de traitement du signal, traitement d'image, des systèmes de contrôle et de la communication numérique.
Filtre particulaireLes filtres particulaires, aussi connus sous le nom de méthodes de Monte-Carlo séquentielles, sont des techniques sophistiquées d'estimation de modèles fondées sur la simulation. Les filtres particulaires sont généralement utilisés pour estimer des réseaux bayésiens et constituent des méthodes 'en-ligne' analogues aux méthodes de Monte-Carlo par chaînes de Markov qui elles sont des méthodes 'hors-ligne' (donc a posteriori) et souvent similaires aux méthodes d'échantillonnage préférentiel.
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.