Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Les filtres particulaires, aussi connus sous le nom de méthodes de Monte-Carlo séquentielles, sont des techniques sophistiquées d'estimation de modèles fondées sur la simulation. Les filtres particulaires sont généralement utilisés pour estimer des réseaux bayésiens et constituent des méthodes 'en-ligne' analogues aux méthodes de Monte-Carlo par chaînes de Markov qui elles sont des méthodes 'hors-ligne' (donc a posteriori) et souvent similaires aux méthodes d'échantillonnage préférentiel. S'ils sont conçus correctement, les filtres particulaires peuvent être plus rapides que les méthodes de Monte-Carlo par chaînes de Markov. Ils constituent souvent une alternative aux filtres de Kalman étendus avec l'avantage qu'avec suffisamment d'échantillons, ils approchent l'estimé Bayésien optimal. Ils peuvent donc être rendus plus précis que les filtres de Kalman. Les approches peuvent aussi être combinées en utilisant un filtre de Kalman comme une proposition de distribution pour le filtre particulaire. L'objectif d'un filtre à particule est d'estimer la densité postérieure des variables d'état compte tenu des variables d'observation. Le filtre de particules est conçu pour un modèle de Markov caché, où le système se compose de variables cachées et observables. Les variables observables (processus d'observation) sont liées aux variables cachées (state-processus) par une forme fonctionnelle connue. De même, le système dynamique décrivant l'évolution des variables d'état est également connu de façon probabiliste. Un filtre de particules génériques estime la distribution postérieure des états cachés en utilisant le procédé de mesure d'observation. Considérez un espace d'état illustré dans le diagramme ci-dessous Le problème de filtrage consiste à estimer séquentiellement les valeurs des états cachés , compte tenu des valeurs du processus d'observation , à tout moment étape . Toutes les estimations bayésiennes de suivent de la densité postérieure .
Jan Skaloud, Gabriel François Laupré
Andrea Zanoni, Grigorios A. Pavliotis
Dominique Pioletti, Alexandre Terrier, Patrick Goetti, Philippe Büchler