Fatigue (matériau)vignette|Photomicrographie de la progression des fissures dans un matériau dues à la fatigue. Image tirée de . La fatigue est l'endommagement local d'une pièce sous l'effet d'efforts variables : forces appliquées, vibrations, rafales de vent Alors que la pièce est conçue pour résister à des efforts donnés, la variation de l'effort, même à des niveaux bien plus faibles que ceux pouvant provoquer sa rupture, peut à la longue provoquer sa rupture. Les essais de fatigue permettent de déterminer la résistance des matériaux à de telles faibles charges répétées.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Cartesian genetic programmingCartesian genetic programming is a form of genetic programming that uses a graph representation to encode computer programs. It grew from a method of evolving digital circuits developed by Julian F. Miller and Peter Thomson in 1997. The term ‘Cartesian genetic programming’ first appeared in 1999 and was proposed as a general form of genetic programming in 2000. It is called ‘Cartesian’ because it represents a program using a two-dimensional grid of nodes. Miller's keynote explains how CGP works.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
KrigeageLe krigeage est, en géostatistique, la méthode d’estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire non biaisé ; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux à deux.
Science des matériauxLa science des matériaux repose sur la relation entre les propriétés, la morphologie structurale et la mise en œuvre des matériaux qui constituent les objets qui nous entourent (métaux, polymères, semi-conducteurs, céramiques, composites, etc.). Elle se focalise sur l'étude des principales caractéristiques des matériaux, ainsi que leurs propriétés mécaniques, chimiques, électriques, thermiques, optiques et magnétiques. La science des matériaux est au cœur de beaucoup des grandes révolutions techniques.
Logique floueLa logique floue (fuzzy logic, en anglais) est une logique polyvalente où les valeurs de vérité des variables — au lieu d'être vrai ou faux — sont des réels entre 0 et 1. En ce sens, elle étend la logique booléenne classique avec des . Elle consiste à tenir compte de divers facteurs numériques pour qu'on souhaite acceptable.
Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.