Structure cristallineLa structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.
Introduction à la mécanique quantiqueLe but de cet article est de présenter une introduction accessible, non technique, au sujet. Pour l'article encyclopédique consulter Mécanique quantique. La mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes.
Effet Hall quantique entierL'effet Hall quantique entier est une version en mécanique quantique de l'effet Hall mise en évidence en 1980 par le physicien allemand Klaus von Klitzing. Cette découverte a eu d'importantes applications dans le développement des semi-conducteurs et en métrologie, notamment dans la détermination de la constante de structure fine.
Habitus (minéralogie)vignette|Cristaux d'aragonite sur le plafond de la grotte Ravenska jama en Slovénie. En minéralogie, l'habitus est la morphologie caractéristique d'un cristal, c'est-à-dire le mode d'association le plus fréquent de ses formes cristallines. Par exemple, le diamant et la pyrite cristallisent tous deux dans le système cubique. Cependant, le diamant se présente habituellement sous la forme (habitus) d'octaèdres brillants, alors que la pyrite forme généralement des cubes aux faces striées, moins souvent des octaèdres.
Many-body problemThe many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus sometimes separately classified as few-body systems.
Quantification de Landauvignette|Niveaux de Landau. En mécanique quantique, la quantification de Landau désigne la quantification des orbites cyclotroniques de particules chargées dans un champ magnétique. En conséquence, les particules chargées peuvent seulement occuper des orbitales d'énergie discrète (ou quantique), appelées « niveaux de Landau ». Dans ces niveaux, le nombre d'électrons admis est directement proportionnel au module du champ magnétique. La quantification de Landau influence directement les oscillations quantiques des propriétés électroniques des matériaux.
Admittance parametersAdmittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters.
Impedance parametersImpedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.
Paramètres SLes paramètres S (de l'anglais Scattering parameters), coefficients de diffraction ou de répartition sont utilisés en hyperfréquences, en électricité ou en électronique pour décrire le comportement électrique de réseaux électriques linéaires en fonction des signaux d'entrée. Ces paramètres font partie d'une famille de formalismes similaires, utilisés en électronique, en physique ou en optique : les paramètres Y, les paramètres Z, les paramètres H, les paramètres T ou les paramètres ABCD.
Base de données spatialesUne base de données spatiales est une base de données optimisée pour stocker et interroger des données reliées à des objets référencés géographiquement, y compris des points, les lignes et des polygones. Alors que les bases de données classiques peuvent comprendre différents types de données numériques et caractères, des fonctions additionnelles ont besoin d'être ajoutées pour traiter les types de données spatiales. Celles-ci sont typiquement appelées géométrie ou caractère.