Publication

Deformable shape models for 2D object segmentation

Robin Thandiackal
2011
Projet étudiant
Résumé

Given a set of images showing individual 2D instances of an object class, the goal is to learn object class deformation in 2D for segmentation automatically. Class deformation is modelled by linear combinations of basis shapes. Usually, given segmentation data and correspondences, such basis shapes can be easily learned with Principal Component Analysis. Here, we are dealing with unsegmented RGB images. We show how to learn segmentations and deformation sequentially in an iterative framework. Variations of the basic algorithm are explained, tested and compared. In order to introduce smoothness priors and data dependent pairwise terms, Graph-cut can be incorporated. The final results show that explicitly restricting segmentations by a linear subspace of shape deformation, leads to significant improvements.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.