Function field of an algebraic varietyIn algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
Fonction êta de DirichletLa fonction êta de Dirichlet est une fonction utilisée dans la théorie analytique des nombres. Elle peut être définie par : où ζ est la fonction zêta de Riemann. Néanmoins, elle peut aussi être utilisée pour définir la fonction zêta sauf aux zéros du facteur 1–2. Elle possède une expression en série de Dirichlet, valide pour tout nombre complexe s avec une partie réelle positive, donnée par : d'où son nom parfois donné de fonction zêta alternée.
Fonction de compte des nombres premiersEn mathématiques, la fonction de compte des nombres premiers est la fonction comptant le nombre de nombres premiers inférieurs ou égaux à un nombre réel x. Elle est notée π(x) (à ne pas confondre avec la constante π). L’image ci-contre illustre la fonction π(n) pour les valeurs entières de la variable. Elle met en évidence les augmentations de 1 que la fonction subit à chaque fois que x est égal à un nombre premier. Soit l'ensemble des nombres premiers et un nombre réel.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Amplitude de diffusionEn mécanique quantique, l'amplitude de diffusion est l'amplitude de probabilité qui intervient lorsqu'une onde sphérique sortante (objet ponctuel) est éclairée par une onde plane entrante, dans le cas d'un processus de diffusion à l'état stationnaire. Ce processus est décrit par la fonction d'onde suivante : où est l'onde plane incidente et transmise selon l'axe , avec le nombre d'onde, est l'onde sphérique sortante diffusée. On a les termes : le vecteur de position, l'angle de diffusion, et l'amplitude de diffusion, dont la dimension est une longueur.
Partial traceIn linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.
Liberté asymptotiqueEn théorie quantique des champs, la liberté asymptotique est la propriété que possèdent certaines théories basées sur un groupe de jauge non abélien de voir leur constante de couplage décroître lorsque les distances deviennent petites (par rapport à l'échelle de la théorie) ou réciproquement lorsque les énergies mises en jeu deviennent importantes par rapport à une certaine échelle caractéristique . Le premier exemple de théorie asymptotiquement libre est celui de la chromodynamique quantique (ou en abrégé QCD) servant à décrire les quarks ainsi que leurs interactions, qui est appelée l'interaction forte.
Limite classiqueLa limite classique ou limite de correspondance est la capacité d'une théorie physique à retrouver pour certaines valeurs de ses paramètres les principes et résultats de la physique classique, c'est-à-dire la physique élaborée jusqu'à la fin du . La limite classique est utilisée avec des théories physiques qui prédisent un comportement non classique ; l'exemple le plus connu est la mécanique quantique, dont les grandeurs caractéristiques font toujours intervenir la constante de Planck ; sa limite classique est donc le plus souvent associée à la limite .
Diffusion RamanLa diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut modifier légèrement la fréquence de la lumière qui y circule. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu. Cet effet physique fut prédit par Adolf Smekal en 1923.
IdéalEn mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau qui est, de plus, stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.