In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0:
This Dirichlet series is the alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta function, ζ(s) — and for this reason the Dirichlet eta function is also known as the alternating zeta function, also denoted ζ*(s). The following relation holds:
Both Dirichlet eta function and Riemann zeta function are special cases of polylogarithm.
While the Dirichlet series expansion for the eta function is convergent only for any complex number s with real part > 0, it is Abel summable for any complex number. This serves to define the eta function as an entire function. (The above relation and the facts that the eta function is entire and together show the zeta function is meromorphic with a simple pole at s = 1, and possibly additional poles at the other zeros of the factor , although in fact these hypothetical additional poles do not exist.)
Equivalently, we may begin by defining
which is also defined in the region of positive real part ( represents the gamma function). This gives the eta function as a Mellin transform.
Hardy gave a simple proof of the functional equation for the eta function, which is
From this, one immediately has the functional equation of the zeta function also, as well as another means to extend the definition of eta to the entire complex plane.
The zeros of the eta function include all the zeros of the zeta function: the negative even integers (real equidistant simple zeros); the zeros along the critical line, none of which are known to be multiple and over 40% of which have been proven to be simple, and the hypothetical zeros in the critical strip but not on the critical line, which if they do exist must occur at the vertices of rectangles symmetrical around the x-axis and the critical line and whose multiplicity is unknown.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
En mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
vignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
We explore the Mellin representation of conformal correlation functions recently proposed by Mack. Examples in the AdS/CFT context reinforce the analogy between Mellin amplitudes and scattering amplitudes. We conjecture a simple formula relating the bulk s ...
We prove an asymptotic formula for the second moment of a product of two Dirichlet L-functions on the critical line, which has a power saving in the error term and which is uniform with respect to the involved Dirichlet characters. As special cases we give ...
We compute a family of scalar loop diagrams in AdS. We use the spectral representation to derive various bulk vertex/propagator identities, and these identities enable to reduce certain loop bubble diagrams to lower loop diagrams, and often to tree- level ...