Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
High-order adaptive methods for fractional differential equations are proposed. The methods rely on a kernel reduction method for the approximation and localization of the history term. To avoid complications typical to multistep methods, we focus our study on 1-step methods and approximate the local part of the fractional integral by integral deferred correction to enable high order accuracy. We present numerical results obtained with both implicit and the explicit methods applied to different problems.
Simone Deparis, Riccardo Tenderini, Nicholas Mueller
Jiri Vanicek, Roya Moghaddasi Fereidani