Lasso (statistiques)En statistiques, le lasso est une méthode de contraction des coefficients de la régression développée par Robert Tibshirani dans un article publié en 1996 intitulé Regression shrinkage and selection via the lasso. Le nom est un acronyme anglais : Least Absolute Shrinkage and Selection Operator. Bien que cette méthode fut utilisée à l'origine pour des modèles utilisant l'estimateur usuel des moindres carrés, la pénalisation lasso s'étend facilement à de nombreux modèles statistiques tels que les modèles linéaires généralisés, les modèles à risque proportionnel, et les M-estimateurs.
Problème inversevignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ? En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes d'un phénomène à partir des observations expérimentales de ses effets. Par exemple, en sismologie, la localisation de l'origine d'un tremblement de terre à partir de mesures faites par plusieurs stations sismiques réparties sur la surface du globe terrestre est un problème inverse.
Grammar inductionGrammar induction (or grammatical inference) is the process in machine learning of learning a formal grammar (usually as a collection of re-write rules or productions or alternatively as a finite state machine or automaton of some kind) from a set of observations, thus constructing a model which accounts for the characteristics of the observed objects. More generally, grammatical inference is that branch of machine learning where the instance space consists of discrete combinatorial objects such as strings, trees and graphs.
Champ solénoïdalthumb|Champ solénoïdal En analyse vectorielle, un champ solénoïdal ou champ incompressible désigne un champ vectoriel dont la divergence est nulle, ou de manière équivalente dont le flot préserve le volume euclidien. L’incompressibilité fait référence à la conservation du volume.
Lie bracket of vector fieldsIn the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y]. Conceptually, the Lie bracket [X, Y] is the derivative of Y along the flow generated by X, and is sometimes denoted ("Lie derivative of Y along X"). This generalizes to the Lie derivative of any tensor field along the flow generated by X.
Vector-valued differential formIn mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms. An important case of vector-valued differential forms are Lie algebra-valued forms. (A connection form is an example of such a form.) Let M be a smooth manifold and E → M be a smooth vector bundle over M.
Explained variationIn statistics, explained variation measures the proportion to which a mathematical model accounts for the variation (dispersion) of a given data set. Often, variation is quantified as variance; then, the more specific term explained variance can be used. The complementary part of the total variation is called unexplained or residual variation. Following Kent (1983), we use the Fraser information (Fraser 1965) where is the probability density of a random variable , and with () are two families of parametric models.
Fonction numériquevignette|Trois fonctions numériques représentant les précipitations, la température minimale et la température maximale au long de l'année à Brest En mathématiques, une fonction numérique est une fonction à valeurs réelles, c'est-à-dire qu'elle associe à toute valeur possible de ses variables un résultat numérique. Le terme est souvent employé pour désigner une fonction réelle d'une variable réelle, notamment dans l'enseignement secondaire, mais il recouvre aussi les notions de fonction de plusieurs variables ou de fonctions définies sur d’autres espaces topologiques comme les variétés différentiables, ou sur des structures discrètes comme les graphes.
Singular integralIn mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → R is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over |y − x| > ε as ε → 0, but in practice this is a technicality.
Phase precessionPhase precession is a neurophysiological process in which the time of firing of action potentials by individual neurons occurs progressively earlier in relation to the phase of the local field potential oscillation with each successive cycle. In place cells, a type of neuron found in the hippocampal region of the brain, phase precession is believed to play a major role in the neural coding of information.