Espace vectoriel topologiqueEn mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures. Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert. Un espace vectoriel topologique (« e.v.t.
Graphe (type abstrait)thumb|upright=1.3|Un graphe orienté, dont les arcs et certains sommets sont « valués » par des couleurs. En informatique, et plus particulièrement en génie logiciel, le type abstrait graphe est la spécification formelle des données qui définissent l'objet mathématique graphe et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'« abstrait » ce type de données car il correspond à un cahier des charges qu'une structure de données concrète doit ensuite implémenter.
Probabilitévignette|Quatre dés à six faces de quatre couleurs différentes. Les six faces possibles sont visibles. Le terme probabilité possède plusieurs sens : venu historiquement du latin probabilitas, il désigne l'opposé du concept de certitude ; il est également une évaluation du caractère probable d'un événement, c'est-à-dire qu'une valeur permet de représenter son degré de certitude ; récemment, la probabilité est devenue une science mathématique et est appelée théorie des probabilités ou plus simplement probabilités ; enfin une doctrine porte également le nom de probabilisme.
Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Analyse sémantique latenteL’analyse sémantique latente (LSA, de l'anglais : Latent semantic analysis) ou indexation sémantique latente (ou LSI, de l'anglais : Latent semantic indexation) est un procédé de traitement des langues naturelles, dans le cadre de la sémantique vectorielle. La LSA fut brevetée en 1988 et publiée en 1990. Elle permet d'établir des relations entre un ensemble de documents et les termes qu'ils contiennent, en construisant des « concepts » liés aux documents et aux termes.
Unique identifierA unique identifier (UID) is an identifier that is guaranteed to be unique among all identifiers used for those objects and for a specific purpose. The concept was formalized early in the development of computer science and information systems. In general, it was associated with an atomic data type. In relational databases, certain attributes of an entity that serve as unique identifiers are called primary keys. In mathematics, set theory uses the concept of element indices as unique identifiers.
Désambiguïsation lexicaleLa désambiguïsation lexicale ou désambigüisation lexicale est la détermination du sens d'un mot dans une phrase lorsque ce mot peut avoir plusieurs sens possibles. Dans la linguistique informatique, la désambiguïsation lexicale est un problème non résolu dans le traitement des langues naturelles et de l'ontologie informatique. La résolution de ce problème permettrait des avancées importantes dans d'autres champs de la linguistique informatique comme l'analyse du discours, l'amélioration de la pertinence des résultats des moteurs de recherche, la résolution des anaphores, la cohérence, l'inférence, etc.
Distance de LevenshteinLa 'distance de Levenshtein' est une distance, au sens mathématique du terme, donnant une mesure de la différence entre deux chaînes de caractères. Elle est égale au nombre minimal de caractères qu'il faut supprimer, insérer ou remplacer pour passer d’une chaîne à l’autre. Elle a été proposée par Vladimir Levenshtein en 1965. Elle est également connue sous les noms de distance d'édition ou de déformation dynamique temporelle, notamment en reconnaissance de formes et particulièrement en reconnaissance vocale.
Espace vectoriel ordonnéEn mathématiques, un espace vectoriel ordonné (ou espace vectoriel partiellement ordonné) est un espace vectoriel sur muni d'une relation d'ordre compatible avec sa structure. Il est dit totalement ordonné si l'ordre associé est un ordre total. Soit E un espace vectoriel sur le corps des réels et un préordre sur .
Similarity measureIn statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics: they take on large values for similar objects and either zero or a negative value for very dissimilar objects. Though, in more broad terms, a similarity function may also satisfy metric axioms.