vignette|Quatre dés à six faces de quatre couleurs différentes. Les six faces possibles sont visibles.
Le terme probabilité possède plusieurs sens : venu historiquement du latin probabilitas, il désigne l'opposé du concept de certitude ; il est également une évaluation du caractère probable d'un événement, c'est-à-dire qu'une valeur permet de représenter son degré de certitude ; récemment, la probabilité est devenue une science mathématique et est appelée théorie des probabilités ou plus simplement probabilités ; enfin une doctrine porte également le nom de probabilisme.
La probabilité d'un événement est un nombre réel compris entre 0 et 1. Plus ce nombre est grand, plus le risque, ou la chance, que l'événement se produise est grand. L'étude scientifique des probabilités est relativement récente dans l'histoire des mathématiques. L'étude des probabilités a connu de nombreux développements depuis le grâce à l'étude de l'aspect aléatoire et en partie imprévisible de certains phénomènes, en particulier les jeux de hasard. Ceux-ci ont conduit les mathématiciens à développer une théorie qui a ensuite eu des implications dans des domaines aussi variés que la météorologie, la finance ou la chimie.
Histoire des probabilités
À l'origine, dans les traductions d'Aristote, le mot ne désigne pas une quantification du caractère aléatoire d'un fait, mais la perception qu'une idée est communément admise par tous. Ce n'est qu'au cours du Moyen Âge, puis de la Renaissance, autour des commentaires successifs et des imprécisions de traduction de l'œuvre d'Aristote, que ce terme connaîtra un glissement sémantique pour finir par désigner la vraisemblance d'une idée.
L'apparition de la notion de , préalable à l'étude des probabilités, n'est apparue qu'au , pour l'évaluation de contrats commerciaux avec le Traité des contrats de Pierre de Jean Olivi, et s'est développée au , avec la généralisation des contrats d'assurance maritime.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Frequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repeatable objective process (and are thus ideally devoid of opinion). The continued use of frequentist methods in scientific inference, however, has been called into question. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the classical interpretation.
La statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Bayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Le cours est une introduction à la théorie des probabilités. Le but sera d'introduire le formalisme moderne (basé sur la notion de mesure) et de lier celui-ci à l'aspect "intuitif" des probabilités.
Master state-of-the art methods in optimization with heuristics and simulation.Work involves:
reading the material beforehand
class hours to discuss the material and solve problems
The probability of detecting technosignatures (i.e., evidence of technological activity beyond Earth) increases with their longevity, or the time interval over which they manifest. Therefore, the assumed distribution of longevities has some bearing on the ...
Thin-laminate composites with thicknesses below 200 mu m hold significant promise for future, larger, and lighter deployable structures. This paper presents a study of the time-dependent failure behavior of thin carbon-fiber laminates under bending, focusi ...
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...