LipidomicsLipidomics is the large-scale study of pathways and networks of cellular lipids in biological systems The word "lipidome" is used to describe the complete lipid profile within a cell, tissue, organism, or ecosystem and is a subset of the "metabolome" which also includes other major classes of biological molecules (such as amino acids, sugars, glycolysis & TCA intermediates, and nucleic acids).
BiosynthèseLa biosynthèse est la formation de substances par un être vivant ou son symbiote, dans son milieu interne ou dans les excrêtats que sont le mucus, les coquilles des œufs ou des mollusques, l’écorce Elle intéresse les chimistes et les biotechnologistes qui découvrent dans les cellules ou les organismes de nouveaux moyens, moins polluants ou moins énergivores, de produire des molécules complexes.
Saccharomyces cerevisiaeSaccharomyces cerevisiae est une espèce de levures employée notamment dans la fermentation de la bière. Elle occupe une place particulière parmi les ferments, levains et levures utilisés depuis la Haute Antiquité : de nombreux peuples, tels que les Égyptiens, Babyloniens ou Celtes, l’utilisaient pour la fabrication de boissons fermentées, du pain, du kéfir, du vin et de la bière de fermentation haute.
Sphingomyélineupright=1.25|vignette|Structure des sphingomyélines à choline. Une sphingomyéline est un sphingolipide constitué d'une unité céramide liée à un résidu de choline par une liaison phosphodiester. Chez l'Homme, les sphingomyélines constituent environ 85 % de tous les sphingolipides et seraient le seul phospholipide qui ne soit pas un phosphoglycéride. Ce sont les constituants fondamentaux de la gaine de myéline des nerfs et sont donc de bons isolants électriques.
Enzymeredresse=1.5|vignette| Représentation d'une α-glucosidase () avec à sa droite le substrat au-dessus des produits de réaction . redresse=1.5|vignette|Diagramme d'une réaction catalysée montrant l'énergie E requise à différentes étapes suivant l'axe du temps t. Les substrats A et B en conditions normales requièrent une quantité d'énergie E1 pour atteindre l'état de transition A...B, à la suite duquel le produit de réaction AB peut se former. L'enzyme E crée un microenvironnement dans lequel A et B peuvent atteindre l'état de transition A.
SaccharomycesSaccharomyces est un genre de champignons ascomycètes ne donnant pas de mycélium — on parle de « levures » —, et comprenant un grand nombre d'espèces utilisées dans l'industrie alimentaire comme agents de fermentation. Saccharomyces cerevisiae est l'espèce la plus connue, certaines souches servent à la fabrication de la levure de bière employée pour l'ensemencement de liqueurs sucrées, destinées à fabriquer la bière ; et d’autres souches servent à la fabrication de la levure de boulanger utilisée dans la fabrication du pain.
Cinétique enzymatiqueLa cinétique enzymatique a pour objet d'identifier et de décrire les mécanismes des réactions biochimiques, catalysées par les enzymes (réaction enzymatique), en étudiant leur vitesse c'est-à-dire leur évolution en fonction du temps. En partant des enzymes isolées et en allant vers les systèmes métaboliques organisés et intégrés, la cinétique enzymatique permet de décrire quantitativement les propriétés catalytiques des enzymes et les mécanismes mis en place pour leur régulation.
Biologie des systèmesLa biologie des systèmes (ou biologie intégrative) est un domaine récent de la biologie qui étudie les organismes vivants comme les systèmes qu'ils sont en réalité, par opposition aux approches historiques qui tendent à décomposer l'étude à tous les niveaux, en biologie, physiologie, biochimie... La biologie systémique cherche à intégrer différents niveaux d'informations pour comprendre comment fonctionne réellement un système biologique.
Catalyse enzymatiqueLa catalyse enzymatique est le processus par lequel des réactions chimiques sont catalysées dans les systèmes vivants par des protéines spécialisées ou des ARN appelés enzymes. La catalyse enzymatique est indispensable aux organismes vivants pour l'accélération spécifique des réactions nécessaires à leur métabolisme et à la biosynthèse de l'ensemble des biomolécules qui les composent. Les principes de la catalyse enzymatique sont analogues à ceux de la catalyse chimique (voir théorie de l'état de transition).
Cofacteur (biochimie)thumb|300px|Le complexe succinate déshydrogénase présente plusieurs cofacteurs : flavine, centres fer-soufre et hème. En biochimie, un cofacteur est un composé chimique non protéique mais qui est nécessaire à l'activité biologique d'une protéine, le plus souvent une enzyme. Les cofacteurs interviennent fréquemment dans la réaction catalytique et peuvent être considérés comme des « molécules d'assistance » aidant aux transformations biochimiques. Les cofacteurs peuvent être classés en deux catégories : les ions métalliques et les clusters métalliques.