Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Homotopy colimit and limitIn mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of and colimit extended to the homotopy category . The main idea is this: if we have a diagramconsidered as an object in the , (where the homotopy equivalence of diagrams is considered pointwise), then the homotopy limit and colimits then correspond to the and coconewhich are objects in the homotopy category , where is the category with one object and one morphism.
Homotopy fiberIn mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.
Théorie de l'homotopieLa théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Homologie singulièreEn topologie algébrique, l'homologie singulière est une construction qui permet d'associer à un espace topologique X une suite homologique de groupes abéliens libres ou de modules. Cette association est un invariant topologique non complet, c'est-à-dire que si deux espaces sont homéomorphes alors ils ont mêmes groupes d'homologie singulière en chaque degré mais que la réciproque est fausse. Le théorème de Stokes appliqué à des formes fermées donne des intégrales nulles. Cependant, il se fonde sur une hypothèse cruciale de compacité.
Groupes d'homotopie des sphèresEn mathématiques, et plus spécifiquement en topologie algébrique, les groupes d'homotopie des sphères sont des invariants qui décrivent, en termes algébriques, comment des sphères de dimensions et égales ou différentes peuvent s'enrouler l'une sur l'autre. La notion, définie au départ pour des sphères de dimension 1 (cercles) et de dimension 2, se généralise à des sphères de toutes dimensions (les -sphères).
Suite de PuppeLa suite de Puppe — nommée d'après Dieter Puppe — est une construction mathématique en topologie algébrique, plus précisément en théorie de l'homotopie. Soient f : A → B une application continue entre deux CW-complexes et C(f) son cône. On a donc une suite : A → B → C(f). En appliquant à f le foncteur de suspension et en effectuant pour Sf : SA → SB la même construction, on obtient une autre suite : SA → SB → C(Sf).
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Cône d'une applicationEn mathématiques et plus précisément en théorie de l'homotopie, le cône d'une application est un espace topologique construit à partir du cône ayant pour base l'espace de départ de l'application, en identifiant les points de cette base avec ceux de l'espace d'arrivée au moyen de l'application. Soit X et Y deux espaces topologiques et f : X → Y une application continue. Le cône de l'application f ou cofibre homotopique de f, noté C, est l'espace topologique , c'est-à-dire en quotientant la réunion disjointe CX⊔Y par l'identification de chaque élément x de X ⊂ CX avec son image f(x) dans Y.
Reduced homologyIn mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise statements to be made (as in Alexander duality) and eliminates many exceptional cases (as in the homology groups of spheres). If P is a single-point space, then with the usual definitions the integral homology group H0(P) is isomorphic to (an infinite cyclic group), while for i ≥ 1 we have Hi(P) = {0}.