Arbre (théorie des graphes)En théorie des graphes, un arbre est un graphe acyclique et connexe. Sa forme évoque en effet la ramification des branches d'un arbre. Par opposition aux arbres simples, arbres binaires, ou arbres généraux de l'analyse d'algorithme ou de la combinatoire analytique, qui sont des plongements particuliers d'arbres (graphes) dans le plan, on appelle parfois les arbres (graphes) arbres de Cayley, car ils sont comptés par la formule de Cayley. Un ensemble d'arbres est appelé une forêt.
Graphe trivialement parfaitvignette|upright=2| Construction d'un graphe trivialement parfait à partir d'intervalles imbriqués et de la relation d'accessibilité dans un arbre. En théorie des graphes, un graphe trivialement parfait est un graphe qui a la propriété que dans chacun de ses sous-graphes induits, la taille du stable maximal est égale au nombre de cliques maximales. Les graphes trivialement parfaits ont été étudiés pour la première fois par Elliot S.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Graphe nulEn mathématiques, plus spécialement en théorie des graphes, un graphe nul désigne soit un graphe d'ordre zéro (i.e. sans sommets), soit un graphe avec sommets mais sans arêtes (on parle aussi dans ce dernier cas de graphe vide). Lorsqu'un graphe nul contient des sommets tous isolés, on le note où représente le nombre de sommets du graphe. La taille (i.e. le nombre d'arêtes ou d'arcs) d'un graphe nul est toujours zéro. L'ordre (i.e. le nombre de sommets) d'un graphe nul n'est pas nécessairement zéro.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).
Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.
Décomposition arborescenteEn théorie des graphes, une décomposition arborescente ou décomposition en arbre (en anglais : tree-decomposition) consiste en une décomposition d'un graphe en séparateurs (sous-ensembles de sommets dont la suppression rend le graphe non connexe), connectés dans un arbre. Cette décomposition permet de définir une autre notion importante, la largeur arborescente ou largeur d'arbre (treewidth). Cette méthode a été proposée par Paul Seymour et Neil Robertson dans le cadre de leur théorie sur les mineurs d'un graphe.
Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.