Graphe cubiqueEn théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. Le graphe complet K4 est le plus petit graphe cubique. Le graphe biparti complet K3,3 est le plus petit graphe cubique non-planaire. Le graphe de Petersen est le plus petit graphe cubique de maille 5. Le graphe de Heawood est le plus petit graphe cubique de maille 6.
Factorisation de graphesvignette|200x200px| Une 1-factorisation du graphe de Desargues : chaque classe de couleur est un 1-facteur. droite|vignette|200x200px| Le graphe de Petersen peut être partitionné en un 1-facteur 1 (en rouge) et un 2-facteur 2 (en bleu). Cependant, le graphe n'est pas 1-factorisable. En théorie des graphes, un facteur d'un graphe G est un graphe partiel, c'est-à-dire un graphe qui a le même ensemble de sommets que G et dont les arêtes sont contenues dans celles de G.
5-polytopeIn geometry, a five-dimensional polytope (or 5-polytope) is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell. A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope.
24 (nombre)Le nombre 24 (vingt-quatre) est l’entier naturel qui suit 23 et qui précède 25. Le nombre 24 est la factorielle de 4 et un nombre composé ; ses diviseurs propres sont 1, 2, 3, 4, 6, 8 et 12, ce qui justifie que 24 est un nombre hautement composé. Les nombres obtenus, en soustrayant 1 de chacun de ses diviseurs (à l’exception de 1 et 2, mais en incluant lui-même), sont tous premiers ; 24 est le plus grand nombre possédant cette propriété. Il y a dix solutions à l’équation où est la fonction indicatrice d'Euler (ou fonction totient).
9 (nombre)9 (neuf) est l'entier naturel qui suit 8 et qui précède 10. C'est le plus haut nombre à un chiffre dans le système décimal. Un groupe de neuf choses est appelé une ennéade. L'action de multiplier par neuf s'appelle nonupler. Neuf est un nombre impair et un nombre composé, ses diviseurs stricts sont 1 et 3. C'est un carré parfait, le quatrième nombre puissant et un nombre cubique centré. 9 est le troisième nombre carré non brésilien. 9 est la somme des factorielles des trois premiers entiers non nuls (1! + 2! + 3! = 9).
Five-dimensional spaceA five-dimensional space is a space with five dimensions. In mathematics, a sequence of N numbers can represent a location in an N-dimensional space. If interpreted physically, that is one more than the usual three spatial dimensions and the fourth dimension of time used in relativistic physics. Whether or not the universe is five-dimensional is a topic of debate. Much of the early work on five-dimensional space was in an attempt to develop a theory that unifies the four fundamental interactions in nature: strong and weak nuclear forces, gravity and electromagnetism.
Apollonian networkIn combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.
Preuve combinatoireIn mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof: A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in two different ways to obtain the different expressions in the identity. Since those expressions count the same objects, they must be equal to each other and thus the identity is established. A bijective proof. Two sets are shown to have the same number of members by exhibiting a bijection, i.