Résumé
9 (neuf) est l'entier naturel qui suit 8 et qui précède 10. C'est le plus haut nombre à un chiffre dans le système décimal. Un groupe de neuf choses est appelé une ennéade. L'action de multiplier par neuf s'appelle nonupler. Neuf est un nombre impair et un nombre composé, ses diviseurs stricts sont 1 et 3. C'est un carré parfait, le quatrième nombre puissant et un nombre cubique centré. 9 est le troisième nombre carré non brésilien. 9 est la somme des factorielles des trois premiers entiers non nuls (1! + 2! + 3! = 9). 9 est la somme des trois premiers cubes parfaits (0 + 1 + 2 = 9). En base 10, un nombre est divisible par neuf si et seulement si la somme de ses chiffres est divisible par 9. Ainsi, pour déterminer si un nombre est divisible par 9 on peut le remplacer par la somme de ses chiffres, et ainsi de suite jusqu'à obtenir un nombre d'un seul chiffre ; si ce chiffre est 9 ou 0, le nombre initial est divisible par 9. Le seul autre nombre avec cette propriété est 3. En base N, les diviseurs de N – 1 ont cette propriété. Une autre conséquence du fait que 9 = 10 – 1 fait que c'est aussi un nombre de Kaprekar. 9 est un nombre de Motzkin. Six neuf consécutifs apparaissent dans les décimales de π de la place 762 à la place 767. Ceci est connu comme le point de Feynman. Les puissances entières successives de 9 sont : 1, 9, 81, 729, 6 561, 59 049 En géométrie, un polygone à neuf côtés est appelé ennéagone (techniquement), ou nonagone (d'un usage commun). En arithmétique, la preuve par neuf est une technique permettant de présumer l'exactitude d'un calcul mental ou effectué « à la main ». On pourrait penser que le système d'écriture décimal est non ambigu (contrairement au système romain qui doit fixer des règles supplémentaires pour écrire IV au lieu de IIII par exemple), il n'en est rien : une suite infinie de 9 en décimales donne le nombre 1 = 0,99999.... Dans un grand nombre de langues du monde entier, 9 s'écrit sous la forme 5+4 ou 4+5. (système quinaire) Exemple : en langue wolof (Sénégal), 9 se dit juroom neent (5+4).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.