Coefficient de transfert thermiqueLe coefficient de transfert thermique ou coefficient de transmission thermique est un coefficient quantifiant le flux d'énergie traversant un milieu, par unité de surface, de volume ou de longueur. L'inverse du coefficient de transfert thermique est la résistance thermique. C'est un terme important dans l'équation d'un transfert thermique et permet d'indiquer la facilité avec laquelle l'énergie thermique passe un obstacle ou un milieu. Dans le cas d'un transfert surfacique, il est appelé coefficient de transfert thermique surfacique ou résistance thermique d'interface.
Transfert thermiquevignette|alt=Autour d'un feu, des mains reçoivent sa chaleur par rayonnement (sur le côté), par convection (au-dessus de ses flammes) et par conduction (à travers un ustensile en métal).|Les modes de transfert thermique ( en anglais pour « rayonnement »). Un transfert thermique, appelé plus communément chaleur, est l'un des modes d'échange d'énergie interne entre deux systèmes, l'autre étant le travail : c'est un transfert d'énergie thermique qui s'effectue hors de l'équilibre thermodynamique.
Convection thermiqueLa convection (thermique) désigne le transfert d'énergie thermique au sein d'un fluide en mouvement ou entre un fluide en mouvement et une paroi solide. Ce transfert d'énergie est réalisé par deux modes de transfert élémentaire combinés que sont l'advection et la diffusion. La convection constitue, avec la conduction et le rayonnement, l'un des trois modes d'échange de chaleur entre deux systèmes, et diffère de ces derniers par la méthode de transfert.
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.
Turbulencevignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence. La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère tourbillonnaire : tourbillons dont la taille, la localisation et l'orientation varient constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée, un comportement difficilement prévisible et l'existence de nombreuses échelles spatiales et temporelles.
Onde gravitationnelleEn physique, une onde gravitationnelle, appelée parfois onde de gravitation, est une oscillation de la courbure de l'espace-temps qui se propage à grande distance de son point de formation. Albert Einstein a prédit l'existence des ondes gravitationnelles en : selon sa théorie de la relativité générale qu’il venait de publier, de même que les ondes électromagnétiques (lumière, ondes radio, rayons X, etc.) sont produites par les particules chargées accélérées, les ondes gravitationnelles seraient produites par des masses accélérées et se propageraient à la vitesse de la lumière dans le vide.
Couche limitevignette|redresse=2|Couches limites laminaires et turbulentes d'un écoulement sur une plaque plane (avec profil des vitesses moyennes). La couche limite est la zone d'interface entre un corps et le fluide environnant lors d'un mouvement relatif entre les deux. Elle est la conséquence de la viscosité du fluide et est un élément important en mécanique des fluides (aérodynamique, hydrodynamique), en météorologie, en océanographie vignette|Profil de vitesses dans une couche limite.
Décalage d'EinsteinLe décalage vers le rouge gravitationnel, dit décalage d'Einstein, est un effet prédit par les équations d'Albert Einstein de la relativité générale. D'après cette théorie, une fréquence produite dans un champ de gravitation est vue décalée vers le rouge (c'est-à-dire diminuée) quand elle est observée depuis un lieu où la gravitation est moindre. La cause de ce décalage des fréquences est dans la dilatation du temps créée par la gravitation. Mais une autre explication peut être fournie par la contraction des longueurs due à la gravitation, appliquée aux longueurs d'onde.
Champ gravitationnelEn physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle.
Magnitude (astronomie)vignette|Sources lumineuses de différentes magnitudes. En astronomie, la magnitude est une mesure sans unité de la luminosité d'un objet céleste dans une bande de longueurs d'onde définie, souvent dans le spectre visible ou infrarouge. Une détermination imprécise mais systématique de la grandeur des objets est introduite dès le par Hipparque. L'échelle est logarithmique et définie de telle sorte que chaque pas d'une grandeur change la luminosité d'un facteur 2,5.