Propensity score matchingIn the statistical analysis of observational data, propensity score matching (PSM) is a statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment. PSM attempts to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units that received the treatment versus those that did not. Paul R.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Modèle causal de Neyman-RubinLe modèle causal de Neyman-Rubin (ou modèle à résultats potentiels, en anglais potential outcome model) est un cadre de pensée permettant d'identifier statistiquement l'effet causal d'une variable sur une autre. La première version du modèle a été proposée par Jerzy Neyman en 1923 dans son mémoire de maîtrise. Le modèle a ensuite été généralisé par Donald Rubin dans un article intitulé « ». Le nom du modèle a été donné par Paul Holland dans un article de 1986 intitulé « ». Expérience naturelle Méthode des
Inférence causaleL'inférence causale est le processus par lequel on peut établir une relation de causalité entre un élément et ses effets. C'est un champ de recherche à la croisée des statistiques, de l'économétrie, de l'épidémiologie, de la méthodologie politique et de l'intelligence artificielle. En 1920, Sewall Wright développe la première path analysis. Cette analyse graphique des relations de causalité entre les variables constitue selon Judea Pearl un travail pionnier dans l'inférence causale.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Bayesian epistemologyBayesian epistemology is a formal approach to various topics in epistemology that has its roots in Thomas Bayes' work in the field of probability theory. One advantage of its formal method in contrast to traditional epistemology is that its concepts and theorems can be defined with a high degree of precision. It is based on the idea that beliefs can be interpreted as subjective probabilities. As such, they are subject to the laws of probability theory, which act as the norms of rationality.
Fonction de vraisemblancevignette|Exemple d'une fonction de vraisemblance pour le paramètre d'une Loi de Poisson En théorie des probabilités et en statistique, la fonction de vraisemblance (ou plus simplement vraisemblance) est une fonction des paramètres d'un modèle statistique calculée à partir de données observées. Les fonctions de vraisemblance jouent un rôle clé dans l'inférence statistique fréquentiste, en particulier pour les méthodes statistiques d'estimation de paramètres.
Foundations of statisticsStatistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data, and is used to solve practical problems and draw conclusions. When analyzing data, the approaches used can lead to different conclusions on the same data. For example, weather forecasts often vary among different forecasting agencies that use different forecasting algorithms and techniques. Conclusions drawn from statistical analysis often involve uncertainty as they represent the probability of an event occurring.
Inverse probabilityIn probability theory, inverse probability is an obsolete term for the probability distribution of an unobserved variable. Today, the problem of determining an unobserved variable (by whatever method) is called inferential statistics, the method of inverse probability (assigning a probability distribution to an unobserved variable) is called Bayesian probability, the "distribution" of data given the unobserved variable is rather the likelihood function (which is not a probability distribution), and the distribution of an unobserved variable, given both data and a prior distribution, is the posterior distribution.