Courbe planevignette|droite|Courbe hyperbolique. En mathématiques, plus précisément en géométrie, une courbe plane est une courbe qui est entièrement contenue dans un (unique) plan, et qui est identifiable à une fonction continue : où est un intervalle de l'ensemble des nombres réels. L' d'une courbe est aussi appelée support de la courbe. Parfois, on utilise aussi l'expression courbe pour indiquer le support d'une courbe. Une courbe sur un espace euclidien de dimension supérieure à 2 est dite plane si son support est contenu dans un plan lui-même contenu dans l'espace euclidien dans lequel elle est définie.
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Ensemble récursifEn théorie de la calculabilité, un ensemble récursif ou ensemble décidable est un ensemble d'entiers (ou d'éléments facilement codables dans les entiers) dont la fonction caractéristique est une fonction récursive au sens de la logique mathématique. En d'autres termes, un ensemble est récursif si, et seulement si, il existe une machine de Turing (un programme informatique) permettant de déterminer en un temps fini si un entier quelconque est dans ou pas. Ce type d'ensemble correspond à un concept effectif de John R.
Élément maximalDans un ensemble ordonné, un élément maximal est un élément tel qu'il n'existe aucun autre élément de cet ensemble qui lui soit supérieur, c'est-à-dire que a est dit élément maximal d'un ensemble ordonné (E, ≤) si a est un élément de E tel que : De même, a est un élément minimal de E si : Pour tout élément a de E, on a les équivalences et l'implication (stricte) : a est un majorant de E ⇔ a est la borne supérieure de E ⇔ a est l'élément maximum (ou « plus grand élément ») de E ⇒ a est l'unique élément maxima
ObservabilityObservability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. In control theory, the observability and controllability of a linear system are mathematical duals. The concept of observability was introduced by the Hungarian-American engineer Rudolf E. Kálmán for linear dynamic systems. A dynamical system designed to estimate the state of a system from measurements of the outputs is called a state observer or simply an observer for that system.
Récursivement énumérableEn théorie de la calculabilité, un ensemble d'entiers naturels est récursivement énumérable ou semi-décidable si : il existe un algorithme qui prend un entier naturel en entrée, et qui s'arrête exactement sur les entiers de ; ou, de manière équivalente : il existe un procédé algorithmique qui, au cours de son fonctionnement, énumère en sortie tous les entiers de et seulement ceux-ci (il est possible, et même nécessaire quand est infini, qu'il ne s'arrête pas).
Conditions de chaîneLes conditions de chaîne (ascendante et descendante) sont deux propriétés mathématiques sur les ordres, identifiées initialement par Emmy Noether dans le contexte de l'algèbre commutative. Sur un ensemble partiellement ordonné (V, ≤), la condition de chaîne ascendante désigne la propriété suivante : toute suite croissante (xn)n ∈ N d'éléments de V est stationnaire, c'est-à-dire constante à partir d'un certain rang (il existe un entier N tel que pour tout n ≥ N, xn = xN) ou également la propriété (équivalente car il s'agit d'une relation d'ordre) V ne contient pas de suite infinie strictement croissante.
Ligne polygonalevignette|Ligne brisée En mathématiques, une ligne polygonale ou une ligne brisée est une figure géométrique formée d’une suite de segments de droites reliant une suite de points. Une ligne brisée fermée constitue un polygone. En jargon informatique, notamment géomatique, une ligne polygonale est par apocope couramment nommée polyligne. Elle peut alors être formée de segments de droites ou de segments de courbes. Soient A, A, A, ... , A, n points (n ≥ 2) du plan affine euclidien usuel, ou d'un espace affine plus général.