Résumé
vignette|droite|Courbe hyperbolique. En mathématiques, plus précisément en géométrie, une courbe plane est une courbe qui est entièrement contenue dans un (unique) plan, et qui est identifiable à une fonction continue : où est un intervalle de l'ensemble des nombres réels. L' d'une courbe est aussi appelée support de la courbe. Parfois, on utilise aussi l'expression courbe pour indiquer le support d'une courbe. Une courbe sur un espace euclidien de dimension supérieure à 2 est dite plane si son support est contenu dans un plan lui-même contenu dans l'espace euclidien dans lequel elle est définie. Une courbe plane est dite simple si elle ne se recoupe pas, autrement dit, si Une manière de représenter une courbe plane est l'équation : telle qu'à chaque point x corresponde un point y, et de façon que chaque point du plan xy : représente le support de la courbe. Une courbe de ce type est également nommée graphique en référence au graphique d'une fonction réelle ; en effet, la représentation peut aussi s'écrire : c'est-à-dire comme fonction d'une variable indépendante. Cette représentation a de nombreuses limites géométriques, du fait que très souvent, une courbe a une description très complexe sous cette forme, qui n'est donc pas adaptée à l'étude des propriétés géométriques. Une courbe peut également être représentée sous la forme : c'est-à-dire comme fonction de deux variables indépendantes. Cette représentation est, selon certains points de vue, meilleure que la représentation explicite ; cependant, on peut rencontrer des problèmes quand il faut expliciter l'une des deux variables en fonction de l'autre : souvent, c'est très compliqué, quand ce n'est pas impossible. La meilleure représentation est sans aucun doute la représentation paramétrée, du type : ou bien où s'appelle le paramètre. La condition de continuité ne suffit pas pour représenter et étudier les courbes vues comme objets filiformes à une dimension avec les caractéristiques de régularité voulues. La condition supplémentaire est que la courbe plane soit différentiable sur .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.