LithiumLe lithium est l'élément chimique de numéro atomique 3, de symbole Li. C'est un métal alcalin, du premier groupe du tableau périodique des éléments. Les noyaux atomiques des deux isotopes stables du lithium (Li et Li) comptent parmi ceux ayant l'énergie de liaison par nucléon la plus faible de tous les isotopes stables, ce qui signifie que ces noyaux sont assez peu stables comparés à ceux des autres éléments légers. C'est pourquoi ils peuvent être utilisés dans des réactions de fission nucléaire comme de fusion nucléaire.
Pile à bactériesUne pile microbienne (ou biopile ou pile à bactéries) est une pile basée sur le principe des piles à combustible: la cathode est alimentée en oxygène (en général par l'air) et l'anode est constituée d'une électrode placée au sein d'une chambre contenant un biofilm de bactéries et de quoi les nourrir. Elles sont également désignées par l'acronyme MFC provenant de la dénomination anglo-saxonne : microbial fuel cell (littéralement : Pile à combustible microbienne).
Détecteur à semi-conducteurUn détecteur à semi-conducteur est un détecteur de particules ou de rayons X ou gamma qui s'appuie sur la technologie des semi-conducteurs. Une particule ayant une énergie suffisante, rencontrant un semi-conducteur, va arracher un électron à un atome du cristal en lui cédant une partie ou la totalité de son énergie sous forme d'énergie potentielle (ionisation) et cinétique. Par exemple, un photon créera des électrons libres dans le milieu par effet photoélectrique, effet Compton ou création de paires.
Microscopie électronique en transmissionvignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Potential applications of graphenePotential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials. In 2008, graphene produced by exfoliation was one of the most expensive materials on Earth, with a sample the area of a cross section of a human hair costing more than 1,000asofApril2008(about100,000,000/cm2). Since then, exfoliation procedures have been scaled up, and now companies sell graphene in large quantities. GraphèneLe graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
Phase-contrast X-ray imagingPhase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images. Standard X-ray imaging techniques like radiography or computed tomography (CT) rely on a decrease of the X-ray beam's intensity (attenuation) when traversing the sample, which can be measured directly with the assistance of an X-ray detector.
Tomographievignette|Principe de base de la tomographie par projections : les coupes tomographiques transversales S1 et S2 sont superposées et comparées à l’image projetée P. La tomographie est une technique d’, très utilisée dans l’, ainsi qu’en géophysique, en astrophysique et en mécanique des matériaux. Cette technique permet de reconstruire le volume d’un objet à partir d’une série de mesures effectuées depuis l’extérieur de cet objet.
Électrolyse de l'eauL'électrolyse de l'eau est un procédé électrolytique qui décompose l'eau (HO) en dioxygène et dihydrogène gazeux grâce à un courant électrique. La cellule électrolytique est constituée de deux électrodes immergées dans un électrolyte (ici l'eau elle-même) et connectées aux pôles opposés de la source de courant continu. vignette|Schéma du voltamètre d'Hoffmann utilisé pour l'électrolyse de l'eau. vignette|Schéma fonctionnel de l’électrolyse.
Single-unit recordingIn neuroscience, single-unit recordings (also, single-neuron recordings) provide a method of measuring the electro-physiological responses of a single neuron using a microelectrode system. When a neuron generates an action potential, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the soma and axon. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time.