Finding Steady States of Communicating Markov Processes Combining Aggregation/Disaggregation with Tensor Techniques
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we propose a Markov chain modeling of complicated phenomena observed from coupled chaotic oscillators. Once we obtain the transition probability matrix from computer simulation results, various statistical quantities can be easily calculated ...
Markov chain Monte Carlo has been the standard technique for inferring the posterior distribution of genome rearrangement scenarios under a Bayesian approach. We present here a negative result on the rate of convergence of the generally used Markov chains. ...
We present an on-the-fly abstraction technique for infinite-state continuous-time Markov chains. We consider Markov chains that are specified by a finite set of transition classes. Such models naturally represent biochemical reactions and therefore play an ...
In this paper, we discuss a novel method for channel estimation. The approach is based on the idea of modeling the complex channel gains by a Markov random field. This graphical model is used to capture the statistical dependencies between consecutive taps ...
In this paper, we present a comprehensive framework for stochastic modeling, model abstraction, and controller design for a biological system. The first half of the paper concerns modeling and model abstraction of the system. Most models in systems biology ...
Institute of Electrical and Electronics Engineers2008
We present an approach based on Hidden Markov Model (HMM) and Gaussian Mixture Regression (GMR) to learn robust models of human motion through imitation. The proposed approach allows us to extract redundancies across multiple demonstrations and build time- ...
The paper contains description of the implementation of C code for tree representation of Markov Chain Monte Carlo(MCMC) clustering. The aim of the code is to produce results which helps in visual representation of the most frequent pattern, its agglomerat ...
Abstraction techniques based on simulation relations have become an important and effective proof technique to avoid the infamous state space explosion problem. In the context of Markov chains, strong and weak simulation relations have been proposed ((B. J ...
We present a simple, effective generalisation of variable order Markov models to full online Bayesian estimation. The mechanism used is close to that employed in context tree weighting. The main contribution is the addition of a prior, conditioned on conte ...
We present ail on-the-fly abstraction technique for infinite-state continuous-time Markov chains. We consider Markov chains that are specified by a finite set of transition classes. Such models naturally represent biochemical reactions and therefore play a ...
Springer-Verlag New York, Ms Ingrid Cunningham, 175 Fifth Ave, New York, Ny 10010 Usa2009