ConformérieEn chimie, la conformérie est une forme de stéréoisomérie décrivant le fait qu'une même molécule existe sous la forme de plusieurs conformères (ou isomères de conformation) à la suite de la rotation des atomes autour de liaisons chimiques simples. On parle surtout de conformérie en chimie organique, pour des rotations autour des liaisons carbone-carbone. Il existe trois principaux facteurs qui rendent certains conformères plus stables que les autres : L'interaction entre une liaison σ et le lobe orbital arrière d'une liaison σ∗ voisine : cela n'est possible que lorsque les deux liaisons sont décalées.
Interaction protéine-protéinethumb|upright=1.2|L'inhibiteur de la ribonucléase en forme de fer à cheval (en représentation « fil de fer ») forme une interaction protéine–protéine avec la protéine de la ribonucléase. Les contacts entre les deux protéines sont représentés sous forme de taches colorées. Une Interaction protéine–protéine apparait lorsque deux ou plusieurs protéines se lient entre elles, le plus souvent pour mener à bien leur fonction biologique.
Conformational entropyIn chemical thermodynamics, conformational entropy is the entropy associated with the number of conformations of a molecule. The concept is most commonly applied to biological macromolecules such as proteins and RNA, but also be used for polysaccharides and other molecules. To calculate the conformational entropy, the possible conformations of the molecule may first be discretized into a finite number of states, usually characterized by unique combinations of certain structural parameters, each of which has been assigned an energy.
Densité électroniqueright|thumb|300px|Carte de densité électronique dans le plan [1-10] du diamant. En mécanique quantique, et en particulier en chimie quantique, la densité électronique correspondant à une fonction d'onde N-électronique est la fonction monoélectronique donnée par : Dans le cas où est un déterminant de Slater constitué de N orbitales de spin : La densité électronique à deux électrons est donnée par : Ces quantités sont particulièrement importantes dans le contexte de la théorie de la fonctionnelle de la densité : Les coordonnées x utilisées ici sont les coordonnées spin-spatiales.
Liaison chimiqueUne liaison chimique est une interaction durable entre plusieurs atomes, ions ou molécules, à une distance permettant la stabilisation du système et la formation d'un agrégat ou d'une substance chimique. Les électrons, chargés négativement, gravitent autour d’un noyau constitué de protons chargés positivement. Les deux corps s’attirent du fait de la force électrostatique s’exerçant entre les électrons et les protons. Ainsi, un électron positionné entre deux noyaux sera attiré par les deux corps chargés positivement, et les noyaux seront attirés par l’électron.
Conformation éclipséeIn chemistry an eclipsed conformation is a conformation in which two substituents X and Y on adjacent atoms A, B are in closest proximity, implying that the torsion angle X–A–B–Y is 0°. Such a conformation can exist in any open chain, single chemical bond connecting two sp3-hybridised atoms, and it is normally a conformational energy maximum. This maximum is often explained by steric hindrance, but its origins sometimes actually lie in hyperconjugation (as when the eclipsing interaction is of two hydrogen atoms).
Site actifLe site actif désigne en catalyse la partie du catalyseur qui va interagir avec le(s) substrat(s) pour former le(s) produit(s). Cette notion concerne tous les types de catalyseurs, mais on l'associe généralement aux enzymes. Le site actif des catalyseurs fait l'objet d'études poussées dans le cadre de la recherche de nouveaux catalyseurs et de l'étude des mécanismes réactionnels en biochimie.. Or, si la structure du site actif est modifié, la catalyse ne peut avoir lieu.
Local-density approximationLocal-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space (and not, for example, derivatives of the density or the Kohn–Sham orbitals). Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model.