Le site actif désigne en catalyse la partie du catalyseur qui va interagir avec le(s) substrat(s) pour former le(s) produit(s). Cette notion concerne tous les types de catalyseurs, mais on l'associe généralement aux enzymes. Le site actif des catalyseurs fait l'objet d'études poussées dans le cadre de la recherche de nouveaux catalyseurs et de l'étude des mécanismes réactionnels en biochimie.. Or, si la structure du site actif est modifié, la catalyse ne peut avoir lieu.
L'activité des enzymes est liée à la présence dans leur structure d'un site particulier appelé le site actif qui a la forme d'une cavité ou d'un sillon. Les molécules ou ligands sur lesquelles agit une enzyme sont définies comme les substrats de la réaction enzymatique. Elles se fixent dans le site actif de l'enzyme en formant des interactions avec la surface de la cavité du site actif. Ces interactions permettent en particulier d'orienter le(s) substrat(s) pour favoriser la réaction. Les groupements fonctionnels de certains des résidus d'acides aminés qui forment la cavité du site actif peuvent alors participer à la réaction. On parle de résidus catalytiques ou de résidus du site actif.
vignette|centré|300px|Site actif de la trypsine. La surface de la cavité du site actif est montrée, avec en jaune, les résidus catalytiques. Une poche profonde est visible au centre, c'est elle qui permet la reconnaissance de l'acide aminé du substrat, en aval duquel se produit la coupure catalysée par l'enzyme
Le mécanisme par lequel une enzyme fixe les substrats dans son site actif peut suivre plusieurs schémas alternatifs :
Historiquement, le premier modèle proposé est celui de Fischer, dit modèle "clé-serrure". Il est basé sur l'hypothèse d'une complémentarité de forme entre le substrat et la cavité du site actif. Le modèle "clé-serrure" est statique, la complémentarité de forme étant préexistante, il n'y a pas de déformation ni du substrat, ni de l'enzyme lors de la formation de l'interaction entre les deux.
Le modèle de l'ajustement induit de Koshland.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
Explore les stratégies catalytiques enzymatiques, y compris les protéases et l'anhydrase carbonique, les mécanismes d'inhibition et la spécificité des protéases sérine.
thumb|300px|Le complexe succinate déshydrogénase présente plusieurs cofacteurs : flavine, centres fer-soufre et hème. En biochimie, un cofacteur est un composé chimique non protéique mais qui est nécessaire à l'activité biologique d'une protéine, le plus souvent une enzyme. Les cofacteurs interviennent fréquemment dans la réaction catalytique et peuvent être considérés comme des « molécules d'assistance » aidant aux transformations biochimiques. Les cofacteurs peuvent être classés en deux catégories : les ions métalliques et les clusters métalliques.
L'histidine (abréviations IUPAC-IUBMB : His et H), du grec ancien , (« mât de navire », « métier à tisser », « voile de navire »), est un acide dont l'énantiomère L est l'un des aminés protéinogènes, l'un des aminés essentiels et fait partie des acides aminés glucoformateur. Elle est encodée sur les ARN messagers par les codons CAU et CAC. Elle est caractérisée par la présence d'un cycle imidazole qui confère une nature basique aux résidus d'histidine dans les protéines. Son rayon de van der Waals est égal à .
L'alcool déshydrogénase (ADH) est une oxydoréductase qui catalyse les réactions intervenant notamment dans le : alcool primaire + NAD+ aldéhyde + NADH + H+ ; alcool secondaire + NAD+ cétone + NADH + H+. Il s'agit d'une famille d'enzymes qui permettent l'interconversion de certains alcools, et notamment l'éthanol, en aldéhydes et cétones, couplée la réduction du NAD+ en NADH. Chez l'humain et de nombreux animaux, l'alcool déshydrogénase est hépatique et participe à la détoxication de l'organisme par l'élimination des alcools toxiques.
Iron-exchanged zeolites are industrial heterogeneous catalysts deployed to remediate anthropogenic emissions of both nitrous oxide (N2O) and nitrogen oxides (NOx = NO + NO2). Despite the extensive scientific attention received, limited knowledge is availab ...
EPFL2024
Through site-specific generation of intermediary reactive aldehydes, Horner-Wadsworth-Emmons olefination can now deliver selective functionalization of stable recombinant proteins and monoclonal antibodies, whilst preserving protein integrity. ...
Springernature2024
, ,
Frustrated Lewis pairs (FLPs), featuring reactive combinations of Lewis acids and Lewis bases, have been utilized for myriad metal-free homogeneous catalytic processes. Immobilizing the active Lewis sites to a solid support, especially to porous scaffolds, ...