Algorithme de sélectionEn algorithmique, un algorithme de sélection est une méthode ayant pour but de trouver le k-ième plus petit élément d'un ensemble d'objets (étant donné un ordre et un entier k). La question de la sélection est un problème essentiel en algorithmique, notamment dans la recherche du maximum, du minimum et de la médiane. Plusieurs algorithmes ont été proposés et plusieurs contextes ont été étudiés : algorithmes en ligne, complexité amortie, complexité en moyenne, ensemble d'objet particuliers etc.
Commande LQEn automatique, la Commande linéaire quadratique, dite Commande LQ, est une méthode qui permet de calculer la matrice de gains d'une commande par retour d'état. L'initiateur de cette approche est Kalman, auteur de trois articles fondamentaux entre 1960 et 1964. Les résultats de Kalman ont été complétés par de nombreux auteurs. Nous ne traiterons ici que de la commande linéaire quadratique à horizon infini dans le cas d'un système linéaire stationnaire (ou « invariant »), renvoyant à l'article Commande optimale pour le cas d'un horizon fini et d'un système linéaire dont les matrices varient en fonction du temps.
Test de primalitévignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
Automate finithumb|upright=2|Fig. 1 : Une hiérarchie d'automates. Un automate fini ou automate avec un nombre fini d'états (en anglais finite-state automaton ou finite state machine ou FSM) est un modèle mathématique de calcul, utilisé dans de nombreuses circonstances, allant de la conception de programmes informatiques et de circuits en logique séquentielle aux applications dans des protocoles de communication, en passant par le contrôle des processus, la linguistique et même la biologie.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Transducteur finiEn informatique théorique, en linguistique, et en particulier en théorie des automates, un transducteur fini (appelé aussi transducteur à états finis par une traduction littérale de l'anglais finite state transducer) est un automate fini avec sorties. C'est une extension des automates finis. Ils opèrent en effet sur les mots sur un alphabet d'entrée et, au lieu de simplement accepter ou refuser le mot, ils le transforment, de manière parfois non déterministe, en un ou plusieurs mots sur un alphabet de sortie.
Learning rateIn machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting.
Numerical cognitionNumerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.