Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We study a nonlinear fluid–structure interaction (FSI) problem between an incompressible, viscous fluid and a composite elastic structure consisting of two layers: a thin layer (membrane) in direct contact with the fluid, and a thick layer (3D linearly elastic structure) sitting on top of the thin layer. The coupling between the fluid and structure, and the coupling between the two structures is achieved via the kinematic and dynamic coupling conditions modeling no-slip and balance of forces, respectively. The coupling is evaluated at the moving fluid–structure interface with mass, i.e., the thin structure. To solve this nonlinear moving-boundary problem in 3D, a monolithic, fully implicit method was developed, and combined with an arbitrary Lagrangian–Eulerian approach to deal with the motion of the fluid domain. This class of problems and its generalizations are important in e.g., modeling FSI between blood flow and arterial walls, which are known to be composed of several different layers, each with different mechanical characteristics and thickness. By using this model we show how multi-layered structure of arterial walls influences the pressure wave propagation in arterial walls, and how the presence of atheroma and the presence of a vascular device called stent, influence intramural strain distribution throughout different layers of the arterial wall. The detailed intramural strain distribution provided by this model can be used in conjunction with ultrasound B-mode scans as a predictive tool for an early detection of atherosclerosis (Zahnd et al. in IEEE international on ultrasonics symposium (IUS), pp 1770–1773, 2011).