Traitement analogique du signalLe traitement analogique du signal est un type de traitement du signal effectué sur des signaux analogiques continus par un processus analogique, par opposition au traitement numérique du signal discret où le traitement du signal est effectué par un processus numérique. Le terme analogique indique qu'on représente mathématiquement le signal comme une série de valeurs continues, contrairement au terme numérique, qui indique plutôt qu'on représente le signal par une série de valeurs discrètes.
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Periodic summationIn mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Fonction de HeavisideEn mathématiques, la fonction de Heaviside (également fonction échelon unité, fonction marche d'escalier), du nom d’Oliver Heaviside, est la fonction indicatrice de . C'est donc la fonction H (discontinue en 0) prenant la valeur 1 pour tous les réels strictement positifs et la valeur 0 pour les réels strictement négatifs. En 0, sa valeur n'a généralement pas d'importance, même si souvent elle vaut 1/2. C'est une primitive de la distribution de Dirac en théorie des distributions.
Semi-continuitéEn analyse mathématique, la semi-continuité est une propriété des fonctions définies sur un espace topologique et à valeurs dans la droite réelle achevée = R ∪ {–∞, +∞} ; il s'agit d'une forme faible de la continuité. Intuitivement, une telle fonction f est dite semi-continue supérieurement en x si, lorsque x est proche de x, f(x) est soit proche de f(x), soit inférieur à f(x). Pour définir semi-continue inférieurement, on remplace « inférieur à » par « supérieur à » dans la définition précédente.
Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
Hilbert series and Hilbert polynomialIn commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra. These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes.