Théorie de l'homotopieLa théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Groupes d'homotopie des sphèresEn mathématiques, et plus spécifiquement en topologie algébrique, les groupes d'homotopie des sphères sont des invariants qui décrivent, en termes algébriques, comment des sphères de dimensions et égales ou différentes peuvent s'enrouler l'une sur l'autre. La notion, définie au départ pour des sphères de dimension 1 (cercles) et de dimension 2, se généralise à des sphères de toutes dimensions (les -sphères).
Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Homotopy fiberIn mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Propriété de relèvement des homotopiesEn mathématiques, en particulier en théorie de l'homotopie en topologie algébrique, la propriété de relèvement des homotopies est une condition technique sur une fonction continue d'un espace topologique E dit total à un autre, B dit espace de base. Moralement, cette propriété énonce que toute homotopie dans l'espace de base se relève en une homotopie dans l'espace total E. Par exemple, un revêtement a une propriété de relèvement local unique des chemins vers un ouvert de la fibre donnée ; l'unicité est due au fait que les fibres d'un revêtement sont des espaces discrets.
Suite de PuppeLa suite de Puppe — nommée d'après Dieter Puppe — est une construction mathématique en topologie algébrique, plus précisément en théorie de l'homotopie. Soient f : A → B une application continue entre deux CW-complexes et C(f) son cône. On a donc une suite : A → B → C(f). En appliquant à f le foncteur de suspension et en effectuant pour Sf : SA → SB la même construction, on obtient une autre suite : SA → SB → C(Sf).
Théorème de suspension de FreudenthalLe théorème de suspension de Freudenthal est un théorème de mathématiques démontré en 1937 par Hans Freudenthal. C'est un résultat fondamental sur l'homotopie, qui explique le comportement des groupes d'homotopie d'un espace pointé lorsqu'on en prend la suspension et qui conduit à la théorie de l'homotopie stable. Soit X un CW-complexe pointé n-connexe. L'application X → Ω(X ∧ S), où Ω désigne le foncteur espace des lacets et ∧ le smash-produit, induit un morphisme de groupesπ(X) → π(Ω(X ∧ S)) ≃ π(X ∧ S).
HomotopieEn mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.