ComportementLe terme « comportement » désigne les actions d'un être vivant. Il a été introduit en psychologie française en 1908 par Henri Piéron comme équivalent français de l'anglais-américain behavior. On l'utilise notamment en éthologie (humaine et animale) ou en psychologie expérimentale. Il peut aussi être pris comme équivalent de conduite dans l'approche psychanalytique. Le comportement d'un être vivant est la partie de son activité qui se manifeste à un observateur.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Champ de vecteursthumb|Un exemple de champ de vecteurs, de la forme (-y,x). thumb|Autre exemple. thumb|Le flux d'air autour d'un avion est un champ tridimensionnel (champ des vitesses des particules d'air), ici visualisé par les bulles qui matérialisent les lignes de courant. En mathématiques, un champ de vecteurs ou champ vectoriel est une fonction qui associe un vecteur à chaque point d'un espace euclidien ou plus généralement d'une variété différentielle.
Morphisme de type finiEn géométrie algébrique, un morphisme de type fini peut être pensé comme une famille de variétés algébriques paramétrée par un schéma de base. C'est un des types de morphismes les plus couramment étudiés. Soit un morphisme de schémas. On dit que est de type fini si pour tout ouvert affine de , est quasi-compact (i.e. réunion finie d'ouverts affines) et que pour tout ouvert affine contenu dans , le morphisme canonique est de type fini.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Mathématiques appliquéesvignette|280px|En théorie des graphes, principales topologies typiques de graphes. Les mathématiques appliquées sont une branche des mathématiques qui s'intéresse à l'application du savoir mathématique aux autres domaines.
Fonctionnement adaptatifLe fonctionnement adaptatif, parfois appelé comportement adaptatif, est la façon dont une entité (être humain, animal, entité économique, robot, acteur modélisé, etc.), seule ou avec d'autres, s'adapte aux exigences et contraintes de son environnement (ou de la vie courante pour l'Homme) pour atteindre un objectif particulier ou plus généralement pour vivre en s'adaptant aux contextes qu'il rencontre.
VidéoprojecteurUn vidéoprojecteur désigne un appareil de projection électronique conçu pour afficher sur un écran séparé ou sur une surface murale blanche, une source vidéo dite vidéogramme ou de type informatique. On associe parfois le terme vidéoprojection avec la notion « frontale » pour le distinguer de la rétroprojection. Le « rétroprojecteur » désigne dans ce cas un téléviseur ou un moniteur vidéo, équipé d'un vidéoprojecteur interne (en anglais « Rear-projection television »), lequel projette l'image sur un écran de verre dépoli, par l'intermédiaire d'une optique ou miroir.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Champ conservatifUn champ de vecteurs est dit à circulation conservative (ou irrotationnel) si sa circulation sur toute courbe fermée est nulle (son rotationnel est alors nul, et réciproquement). Sous certaines conditions relatives au domaine de définition et à la régularité du champ, on peut dériver le potentiel de ce champ, fonction scalaire qui en permet une représentation alternative. De même, un champ de vecteurs est dit à flux conservatif si son flux sur toute surface fermée est nul (sa divergence est alors nulle, et réciproquement).