Applications of Approximate Learning and Inference for Probabilistic Models
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this article, we present a new model for unsupervised discovery of recurrent temporal patterns (or motifs) in time series (or documents). The model is designed to handle the difficult case of multivariate time series obtained from a mixture of activitie ...
This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns called motifs from documents given as word×time count matrices (e.g., videos). In this model, documents are represented as a mixture of sequenti ...
Segmenting images is a significant challenge that has drawn a lot of attention from different fields of artificial intelligence and has many practical applications. One such challenge addressed in this thesis is the segmentation of electron microscope (EM) ...
We consider the problem of learning multi-ridge functions of the form f (x) = g(Ax) from point evaluations of f. We assume that the function f is defined on an l(2)-ball in R-d, g is twice continuously differentiable almost everywhere, and A is an element ...
We present a new approach to address the problem of large sequence mining from big data. The particular problem of interest is the effective mining of long sequences from large-scale location data to be practical for Reality Mining applications, which suff ...
In this paper, we extend the generalized approximate message passing (G-AMP) approach, originally proposed for high-dimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case. In Part I of this two-par ...
In this paper, we propose a method for modeling trajectory patterns with both regional and velocity observations through the probabilistic topic model. By embedding Gaussian models into the discrete topic model framework, our method uses continuous velocit ...
Computational education offers an important add-on to conventional teaching. To provide optimal learning conditions, accurate representation of students' current skills and adaptation to newly acquired knowledge are essential. To obtain sufficient represen ...
Including spatial information is a key step for successful remote sensing image classification. In particular, when dealing with high spatial resolution, if local variability is strongly reduced by spatial filtering, the classification performance results ...
Latent Gaussian models (LGMs) are widely used in statistics and machine learning. Bayesian inference in non-conjugate LGMs is difficult due to intractable integrals in- volving the Gaussian prior and non-conjugate likelihoods. Algorithms based on variation ...