Mécanique spatialeLa mécanique spatiale, aussi dénommée astrodynamique, est, dans le domaine de l'astronomie et de l'astronautique, la science qui a trait à l'étude des mouvements. C'est une branche particulière de la mécanique céleste qui a notamment pour but de prévoir les trajectoires des objets spatiaux tels que les fusées ou les engins spatiaux y compris les manœuvres orbitales, les changements de plan d'orbite et les transferts interplanétaires.
Action de groupe (mathématiques)En mathématiques, une action d'un groupe sur un ensemble est une loi de composition externe du groupe sur l'ensemble, vérifiant des conditions supplémentaires. Plus précisément, c'est la donnée, pour chaque élément du groupe, d'une permutation de l'ensemble, de telle manière que toutes ces bijections se composent de façon compatible avec la loi du groupe. Étant donné un ensemble E et un groupe G, dont la loi est notée multiplicativement et dont l'élément neutre est noté e, une action (ou opération) de G sur E est une application : vérifiant chacune des 2 propriétés suivantes : On dit également que G opère (ou agit) sur l'ensemble E.
Mouvement coorbitalvignette|Définitions d'orbites ; Une convention possible Les six diagrammes ci-dessus montrent le fr:Soleil au centre (le point orange) En mécanique céleste, le mouvement coorbital ou co-orbital (en anglais : co-orbital motion) est le mouvement de révolution de deux objets célestes, ou plus, autour d'un même corps central sur des orbites différentes mais en résonance 1:1. L'action de coorbiter est appelée le coorbitage. Chaque objet animé d'un mouvement coorbital est dit coorbitant. est dit coorbiteur.
Groupe discretIn mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.
Vitesse orbitalethumb|Comparaisons de vitesses orbitales de différents satellites de la Terre. La vitesse orbitale d'un objet céleste, le plus souvent une planète, un satellite naturel, un satellite artificiel ou une étoile binaire, est la vitesse à laquelle il orbite autour du barycentre d'un système à deux corps, soit donc le plus souvent autour d'un corps plus massif. L'expression peut être employée pour désigner la vitesse orbitale moyenne du corps le long de son orbite ou la vitesse orbitale instantanée, en un point précis.
Locally profinite groupIn mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups.
Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Compacité (mathématiques)En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le théorème des bornes généralisé ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact.
Topological orderIn physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Groupe moyennableEn mathématiques, un groupe moyennable (parfois appelé groupe amenable par calque de l'anglais) est un groupe topologique localement compact qu'on peut munir d'une opération de « moyenne » sur les fonctions bornées, invariante par les translations par les éléments du groupe. La définition initiale, donnée à partir d'une mesure (simplement additive) des sous-ensembles du groupe, fut proposée par John von Neumann en 1929 à la suite de son analyse du paradoxe de Banach-Tarski.