Triangle groupIn mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action. Let l, m, n be integers greater than or equal to 2.
TridécagoneEn géométrie, un tridécagone est un polygone à 13 sommets, donc 13 côtés et 65 diagonales. La somme des angles internes d'un tridécagone non croisé est égale à °. Un tridécagone régulier est un tridécagone dont les treize côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a six : cinq étoilés (les tridécagrammes notés {13/2}, {13/3}, {13/4}, {13/5} et {13/6}) et un convexe (noté {13}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le tridécagone régulier ». Regular polygon 13 annotated.
Uniform 5-polytopeIn geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets. The complete set of convex uniform 5-polytopes has not been determined, but many can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter diagrams.
Regular icosahedronIn geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex.
Kuratowski's theoremIn graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
Configuration de sommetEn géométrie, une configuration de sommet est une notation abrégée pour représenter la figure de sommet d'un polyèdre ou d'un pavage comme la séquence de faces autour d'un sommet. Pour les polyèdres uniformes, il n'y a qu'un seul type de sommet et, par conséquent, la configuration des sommets définit entièrement le polyèdre. (Les polyèdres chiraux existent dans des paires d'images miroir avec la même configuration de sommet). Une configuration de sommet est donnée sous la forme d'une suite de nombres représentant le nombre de côtés des faces faisant le tour du sommet.
État du résultat globalL'état du résultat global dans la terminologie IFRS, également nommé état des résultats ou compte du résultat (abrégé CR), est un état financier synthétisant l'ensemble des charges et des produits d'une entreprise ou autre organisme ayant une activité marchande, pour une période donnée, appelée exercice comptable. Le compte de résultat est donc un document de synthèse, faisant partie des états financiers, et ayant pour fonction d'indiquer la performance de l'entreprise.
Vertex arrangementIn geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a square vertex arrangement is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same vertex arrangement if they share the same 0-skeleton. A group of polytopes that shares a vertex arrangement is called an army. The same set of vertices can be connected by edges in different ways.
HexadécachoreL'hexadécachore est, en géométrie, un 4-polytope régulier convexe, c'est-à-dire un polytope à 4 dimensions à la fois régulier et convexe. Il est constitué de 16 cellules tétraédriques. L'hexadécachore est l'hyperoctaèdre de dimension 4. Son dual est le tesseract (ou hypercube). Il pave l'espace euclidien à quatre dimensions.
IcosaèdreEn géométrie, un icosaèdre est un solide de dimension 3, de la famille des polyèdres, contenant exactement vingt faces. Le préfixe icosa-, d'origine grecque, signifie « vingt ». Il existe de nombreux polyèdres à vingt faces tels l'icosaèdre régulier convexe (appelé plus simplement icosaèdre si le contexte fait référence aux solides de Platon), l'icosaèdre rhombique, le pseudo-icosaèdre, le grand icosaèdre ou plusieurs solides de Johnson.