View modelA view model or viewpoints framework in systems engineering, software engineering, and enterprise engineering is a framework which defines a coherent set of views to be used in the construction of a system architecture, software architecture, or enterprise architecture. A view is a representation of the whole system from the perspective of a related set of concerns. Since the early 1990s there have been a number of efforts to prescribe approaches for describing and analyzing system architectures.
Conceptual metaphorIn cognitive linguistics, conceptual metaphor, or cognitive metaphor, refers to the understanding of one idea, or conceptual domain, in terms of another. An example of this is the understanding of quantity in terms of directionality (e.g. "the price of peace is rising") or the understanding of time in terms of money (e.g. "I spent time at work today"). A conceptual domain can be any mental organization of human experience.
Seconde forme fondamentaleLa seconde forme fondamentale est une forme quadratique caractérisant certains aspects de la géométrie différentielle des surfaces. Ce concept est d'abord apparu dans l'étude des surfaces réglées avant de prendre toute sa généralité dans le cadre de la géométrie riemannienne. Alors que la première forme fondamentale décrit la « géométrie interne » d'une surface (c'est-à-dire les propriétés qui peuvent être déterminées depuis la surface elle-même), la seconde forme fondamentale dépend de la situation de la surface dans l'espace.
Première forme fondamentaleLa première forme fondamentale est un outil utilisé dans l'étude des surfaces de l'espace euclidien. Elle se calcule en chaque point P de la surface Σ et s'interprète comme une écriture formelle du produit scalaire euclidien usuel en restriction au plan tangent TPΣ. On note la première forme fondamentale par la lettre romaine I. La première forme fondamentale est susceptible de généralisations dans le cadre de la géométrie riemannienne, c'est-à-dire des variétés (espaces courbes modelés localement sur l'espace euclidien) pour étudier l'inclusion d'une variété riemannienne dans une autre, ou plus généralement les façons d'appliquer une variété riemannienne dans une autre.