Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Théorie des groupesvignette|Le Rubik's cube illustre la notion de groupes de permutations. Voir groupe du Rubik's Cube. La théorie des groupes est en mathématique, plus précisément en algèbre générale, la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie. La théorie des groupes est étroitement liée à la théorie des représentations.
Initial value problemIn multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem.
Gouvernance mondialeLa question de la gouvernance mondiale se pose dans le contexte de la mondialisation. Face à des interdépendances — à l'échelle mondiale — entre les sociétés humaines mais aussi entre l'humanité et la biosphère, la gouvernance mondiale définit la construction de réglementations ou mieux de régulations à la même échelle. Cela ne signifie pas la mise en place d'un gouvernement mondial sur le modèle traditionnel des États mais la mise en place de réglementations publiques et privées à la hauteur des défis.
DissipationEn physique, la dissipation désigne le phénomène selon lequel un système dynamique (onde, oscillation...) perd de l'énergie au cours du temps. Cette perte est principalement due aux frottements et aux turbulences, et l'énergie correspondante est alors dégradée en chaleur, une forme d'énergie qui ne pourra pas être intégralement retransformée en énergie mécanique, comme l'affirme le deuxième principe de la thermodynamique. Amortissement Dissipateur thermique Entropie Hystérésis Théorème de fluctuation-dissi
Risque de catastrophe planétairevignette|Vue d'artiste d'un impact cosmique. Un tel impact pourrait avoir été la cause de l'extinction des dinosaures non-aviens.|alt=Une boule de feu s'écrasant dans l'océan. Un risque de catastrophe planétaire ou de catastrophe globale est un événement futur hypothétique qui aurait le potentiel de dégrader le bien-être de la majeure partie de l'humanité, par exemple en détruisant la civilisation moderne ; cette notion, introduite par divers auteurs à partir de la fin du , a été théorisée et précisée en 2008 par le philosophe Nick Bostrom, lequel avait proposé également dès 2002 d'appeler risque existentiel un événement qui pourrait causer l’extinction de l'humanité.
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Angles d'EulerEn mécanique et en mathématiques, les angles d'Euler sont des angles introduits par Leonhard Euler (1707-1783) pour décrire l'orientation d'un solide ou celle d'un référentiel par rapport à un trièdre cartésien de référence. Au nombre de trois, ils sont appelés angle de précession, de nutation et de rotation propre, les deux premiers pouvant être vus comme une généralisation des deux angles des coordonnées sphériques. Le mouvement d'un solide par rapport à un référentiel (un avion dans l'air, un sous-marin dans l'eau, des skis sur une pente.
InvariantEn mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).