Publication

On Moments Of Twisted L-Functions

Philippe Michel
2017
Article
Résumé

We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of q, and we use the theory of Deligne and Katz to prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of q. When at least one of the forms f and g is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted L-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M. Young's asymptotic evaluation of the fourth moment of Dirichlet L-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.