GraphèneLe graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
Potential applications of graphenePotential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials. In 2008, graphene produced by exfoliation was one of the most expensive materials on Earth, with a sample the area of a cross section of a human hair costing more than 1,000asofApril2008(about100,000,000/cm2). Since then, exfoliation procedures have been scaled up, and now companies sell graphene in large quantities. Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Phase géométriqueEn mécanique quantique, une phase géométrique est un nombre complexe de module unité par lequel est multiplié le vecteur d'état (ou la fonction d'onde) d'un système physique dont on a fait varier un paramètre de façon « adiabatique » selon un circuit fermé (dans l'espace des paramètres). La phase de -Berry est un exemple de telle phase géométrique. Un phénomène analogue existe en optique classique pour la polarisation de la lumière. Fonction d'onde Espace fibré Holonomie Michael V.
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Intrication quantiqueEn mécanique quantique, l'intrication quantique, ou enchevêtrement quantique, est un phénomène dans lequel deux particules (ou groupes de particules) forment un système lié, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare. Un tel état est dit « intriqué » ou « enchevêtré », parce qu'il existe des corrélations entre les propriétés physiques observées de ces particules distinctes. En effet, le théorème de Bell démontre que l'intrication donne lieu à des actions non locales.
Réduction du paquet d'ondeLa réduction du paquet d'onde est un concept de la mécanique quantique selon lequel, après une mesure, un système physique voit son état entièrement réduit à celui qui a été mesuré. Pendant longtemps, le processus par lequel cette réduction a lieu a été inconnu des physiciens, ce qui les a contraint à en faire un postulat afin de rester conforme aux résultats expérimentaux. Le concept de réduction du paquet d'onde implique de nombreuses difficultés sur le plan logique et épistémologique.
Double-slit experimentIn modern physics, the double-slit experiment demonstrates that light and matter can satisfy the seemingly-incongruous classical definitions for both waves and particles, which is considered evidence for the fundamentally probabilistic nature of quantum mechanics. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. At that time it was thought that light consisted of either waves or particles.
Quantum tomographyQuantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state.