Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we study a question related to the classical Erdos-Ko-Rado theorem, which states that any family of k-element subsets of the set [n] = {1,..., n} in which any two sets intersect has cardinality at most ((n-1)(k-1)). We say that two non-empty families A, B subset of (([n])(k)) are s-cross-intersecting if, for any A is an element of A, B is an element of B, we have |A boolean AND B| >= s. In this paper we determine the maximum of |A| + |B| for all n. This generalizes a result of Hilton and Milner, who determined the maximum of |A| + |B| for nonempty 1-cross-intersecting families.