Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Huntington’s disease is caused by expansion of a polyglutamine (polyQ) domain within exon 1 of the huntingtin gene (Httex1). A popular hypothesis is that the Httex1 protein undergoes sharp conformational changes as the polyQ length exceeds a threshold of 36 residues. We test this hypothesis by combining novel semi-synthesis strategies with state-of-the-art single molecule Förster resonance energy transfer measurements on biologically relevant Httex1 proteins of five different polyQ lengths. Our results, integrated with atomistic simulations, negate the hypothesis of a sharp, polyQ length-dependent change in the structure of monomeric Httex1. Instead, they support a continuous global compaction with increasing polyQ length and this derives from increased prominence of the globular polyQ domain. More specifically, we show that that monomeric Httex1 adopts tadpole-like architectures for polyQ lengths above and beyond the pathological threshold. Additionally, our results suggest that higher order homo- and / or heterotypic interactions within distinct sub-populations of neurons are likely to be the main source of sharp polyQ length-dependencies of HD. These findings pave the way for uncovering the true structural basis of Httex1-mediated neurotoxicity.
Hilal Lashuel, Lorène Aeschbach, Nathan Alain Denis Riguet
Hilal Lashuel, Jonathan Jean-Pierre Ricci, Andreas Reif, Iman Rostami, Rajasekhar Kolla, Gopinath Pushparathinam